Example Candidate Responses

Cambridge International AS \& A Level Chemistry

9701
Paper 4 - A Level Structured Questions

In order to help us develop the highest quality Curriculum Support resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of Cambridge Curriculum Support resources are very important to us.
https://www.surveymonkey.co.uk/r/GL6ZNJB

Do you want to become a Cambridge consultant and help us develop support materials?
Please follow the link below to register your interest.
http://www.cie.org.uk/cambridge-for/teachers/teacherconsultants/

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre.

Contents

Contents 3
Introduction 4
Assessment at a glance 6
Paper 4 - A Level Structured Questions 7
Question 1 7
Question 2 13
Question 3 21
Question 4 27
Question 5 33
Question 6 41
Question 7 49
Question 8 57
Question 9 66
Question 10 72

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS and A Level Chemistry (9701), and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For each question, each response is annotated with a clear explanation of where and why marks were awarded or omitted. This, in turn, is followed by examiner comments on how the answer could have been improved. In this way it is possible for you to understand what candidates have done to gain their marks and what they will have to do to improve their answers. At the end there is a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work. These help teachers to assess the standard required to achieve marks, beyond the guidance of the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted.

The questions, mark schemes and pre-release material used here are available to download as a zip file from Teacher Support as the Example Candidate Responses Files. These files are:

Question Paper 22, June 2016						
Question paper	9701_s16_qp_22.pdf					
Mark scheme	9701_s16_ms_22.pdf		$\left	\right.$	Question Paper 33, June 2016	
:---	:---					
Question paper	9701_s16_qp_33.pdf					
Mark scheme	9701_s16_ms_33.pdf	$	$	Question Paper 42, June 2016		
:---	:---					
Question paper	9701_s16_qp_42.pdf					
Mark scheme	9701_s16_ms_42.pdf					
Question Paper 52, June 2016						
Question paper	9701_s16_qp_52.pdf					
Mark scheme	9701_s16_ms_52.pdf					

Past papers, Examiner Reports and other teacher support materials are available on Teacher Support at https://teachers.cie.org.uk

How to use this booklet

Example candidate response - high	Examiner comments
3 Acidified potassium dichromate(VI) can oxidise ethanedioic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. The relevant half-equations are shown. $\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{C}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\ & \quad\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}\right) \times 3 \\ & \mathrm{H}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}^{+}+6 \ell^{+} \end{aligned}$ (a) State the overall equation for the reaction between acidified dichromate(VI) ions and ethanedioic acid.	1 This equation contains all the correct species from the half-equations given so one mark has Examiner comments are alongside the answers, linked to specific part of the answer. These explain where and why marks were awarded. This helps you to interpret the standard of Cambridge exams and helps your learners to refine their exam technique.

How the candidate could have improved their answer

In (a) the candidate needed to remember that the key loss in one half-equation must balance the electron ga

In (b)(iii) the candidate used the correct method but n number of significant figures in the answer must corre provided.

This explains how the candidate could have improved their answer and helps you to interpret the standard of Cambridge exams and helps your learners to refine exam technique.

Common mistakes candidates made in this question

(a) The skills needed to combine two half-equations and tricky for many candidates. Good candidates often got o them out, while weaker candidates failed to recognise th
(b) The first two parts of the calculation were generally o the Mr calculation depended on the previous answer tog

This lists the common mistakes candidates made in answering each question. This will help your learners to avoid these mistakes at the exam and give them the best chance of achieving a high mark.

Assessment at a glance

Candidates for Advanced Subsidiary (AS) certification take Papers 1, 2 and 3 (either Advanced Practical Skills 1 or Advanced Practical Skills 2) in a single examination series.

Candidates who, having received AS certification, wish to continue their studies to the full Advanced Level qualification may carry their AS marks forward and take Papers 4 and 5 in the examination series in which they require certification.

Candidates taking the full Advanced Level qualification at the end of the course take all five papers in a single examination series.

Candidates may only enter for the papers in the combinations indicated above.

Candidates may not enter for single papers either on the first occasion or for resit purposes.
All components are externally assessed.

| Component | Weighting |
| :--- | :--- | :--- |

Teachers are reminded that the latest syllabus is available on our public website at www.cie.org.uk and Teacher Support at https://teachers.cie.org.uk

Paper 4 - A Level Structured Questions

Question 1

Example candidate response -	Examiner comments
1 (a) Magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, is very soluble in water. When a hot saturated solution of magnesium nitrate is cooled, crystals of the hydrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, are formed. In the crystals, six water molecules bond to each Mg^{2+} ion, and some of these water molecules are also bonded to the nitrate ions. (i) Suggest the type of bonding that occurs between $\mathrm{H}_{2} \mathrm{O}$ and Mg^{2+}, \qquad dative band 1 $\mathrm{H}_{2} \mathrm{O}$ and NO_{3}^{-}. ionic bord. (ii) Describe the arrangement of the water molecules around the Mg^{2+} ion. The arenemen arrongement...... is. such that th shope is \qquad (iii) Describe in detail what you would observe when crystals of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are heated in a boiling tube, gently at first and then more strongly. Write equations for any reactions that occur. Initially, watur water vapow is produad. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}-6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$ Aftr stonge Luting, brown fums are produad (NO2) and a white solid is................ (Mgo). $\mathrm{Mg}_{\mathrm{H}}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{MgO}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$ \qquad \qquad \qquad (iv) Calculate the percentage loss in mass when $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is heated strongly to constant mass. $\text { Molor masis of } \begin{aligned} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} & =24.3+2[14+3(16)]+6[2+16] \\ & =256.3 \end{aligned}$ Moler mass of $\mathrm{MgO}=24.3+16=40.3$ $\begin{aligned} \therefore \text { Percantage loss } & =\frac{256.3-40.3}{256.3} \times 100 \% \\ & =84.3 \% \end{aligned}$	1 The first answer is correct, but the second is incorrect. Hydrogen bond or ion-dipole forces are required. Mark for (a) (i) $=1 / 2$ (2) The correct answer is given. Mark for (a) (ii) $=1 / 1$ (3) The candidate gives two correct balanced equations and three viable observations for four marks. The two other allowed observations are: on gentle heating the solid turns to liquid; on strong heating a gas is formed that relights a glowing splint. Mark for (a) (iii) $=4 / 4$ (4) A clear, well presented calculation. Full working shown. Mark for (a) (iv) $=2 / 2$

Example candidate response - high, continued	Examiner comments
(b) Explain why the Group 2 nitrates become more stable to heat down the group: Going down the group, size of cation increases Polenzing power......... A cation dicreases down Srope............... 2 . and so thermal stobility ingreases. \qquad (c) Magnesium nitrate and silver nitrate, AgNO_{3}, decompose on heating to produce the same gases. Silver nitrate also produces silver metal. during decomposition. Write an equation for the decomposition of AgNO_{3}.	(5) The candidate answers correctly for the first mark in the mark scheme. They do not earn the second mark, as the polarising power of the cation is not linked to the relative distortion of the electron cloud of the anion. Mark for $(b)=1 / 2$ 6 The correct equation is given. Multiplies are allowed. Mark for $(c)=1 / 1$ Total marks awarded = 10 out of 12

How the candidate could have improved their answer

(a) (i) The candidate should have given the type of bonding between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NO}_{3}{ }^{-}$as hydrogen bonding or ion-dipole forces.
(a) (iii) The candidate was awarded full marks here, although they omitted two other viable observations: (on gentle heating) the solid turns to liquid and (on strong heating) a gas is formed that relights a glowing splint.
(b) The candidate was not awarded the second mark here. This could have been earned by stating that there is less distortion (less polarisation) of the anion by the cation down the group.

Mark awarded = (a) (i) 1/2, (ii) 1/1, (iii) 4/4, (iv) $\mathbf{2 / 2}$
Mark awarded $=(b) \mathbf{1 / 2}$
Mark awarded = (c) 1/1
Total marks awarded = 10 out of 12

Example candidate response - middle	Examiner comments
(a) Magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, is very soluble in water. When a hot saturated solution of magnesium nitrate is cooled;crystals of.the hydrate, $\left.\mathrm{Mg}^{2}\left(\mathrm{NO}_{3}\right)_{2}\right): 6 \mathrm{H}_{2} \mathrm{O}:$ are formed: In the crystals, six water molecules bond to each Mg^{2+} ion, and some of these water molecules are also bonded to the nitrate ions. (i) Suggest the type of bonding that occurs between $\mathrm{H}_{2} \mathrm{O}$ and Mg^{2+}, \qquad Co-ordinate Bonding $\mathrm{H}_{2} \mathrm{O}$ and NO_{3}^{-}. \qquad Covalent Bonding (ii) Describe the arrangement of the water molecules around the Mg^{2+} ion. a. Hexagonal (iii) Describe in detail what you would observe when crystals of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are heated in a boiling tube, gently at first and then more strongly. Write equations for any reactions that occur. At finst., when $\mathrm{Mg}_{\mathrm{g}}\left(\mathrm{NO}_{3}\right)_{2} \cdots \mathrm{HH}_{2} \mathrm{O}$ an heated, steam would ...be seen on the insiden of the poilinghaberns the cyystalsare delyydratied. \qquad \qquad $\begin{equation*} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{HH} \mathrm{H} \mathrm{O} \rightleftharpoons \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \tag{3} \end{equation*}$ when heated strongly, a broum gas an seen on the inson insiden of the twhe and being emitted, this in the Nittogen gas which has a a stong smell $\mathrm{S}_{3} \mathrm{SO}_{2} \mathrm{mg}(\mathrm{NO})_{2} \rightarrow \mathrm{mgO}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$. \qquad [4] (iv) Calculate the percentage loss in mass when. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is heated.strongly.toconstant mass.	(1) The first answer is correct, but the second is incorrect. Hydrogen bond or ion-dipole forces are required. Mark for (a) (i) = 1/2 (2) 'Hexagonal' is not sufficient here: 'octahedral' is required. Mark for (a) (ii) $=0 / 1$ (3) Two correct balanced equations are shown for the dehydration and subsequent decomposition of magnesium nitrate. Only two viable observations are given (steam and brown gas). Examiners ignored the comment about 'nitrogen gas' as the identities of the product are marked in the equations. Mark for (a) (iii) $=3 / 4$ (4) Two marks awarded. Examiners credited 84.325 shown in the working and ignored the rounding to two significant figures. Candidates should give their answers to three significant figures unless instructed otherwise. Mark for (a) (iv) $=2 / 2$

Example candidate response - middle, continued	Examiner comments
(b) Explain why the Group 2 nitrates become more stable to heat down the group. \qquadbecome more stable to heat and don't decompose easily. 5 \qquad \qquad \qquad (c) Magnesium nitrate and silver nitrate, AgNO_{3}, decompose on heating to produce the same gases. Silver nitrate also produces silver metal during decomposition. Write an equation for the decomposition of AgNO_{3}. $\begin{equation*} 2 \mathrm{AgNO}_{3} \stackrel{\triangle \mathrm{Ag}}{\mathrm{O}} \mathrm{ONO}_{2}+\mathrm{O}_{2} \tag{1} \end{equation*}$	(5) There is no comment about the increasing cation size or that the anion becomes less polarised down the group. Mark for $(b)=0 / 2$ 6 A correct balanced equation. Examiners ignored the use of the reversible sign in the equation. Mark for (c) $=1 / 1$ Total marks awarded = 7 out of 12

How the candidate could have improved their answer

(a) (i) The candidate should have given the type of bonding between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NO}_{3}{ }^{-}$as hydrogen bonding or ion-dipole forces.
(a) (ii) 'Octahedral' was the only valid answer here.
(a) (iii) The candidate could have made more viable observations here: (on gentle heating) the solid turns to liquid, a white solid is formed, and (on strong heating) a gas is formed that relights a glowing splint.
(b) The candidate needed to relate the increase in thermal stability of the Group II nitrates to the increasing cation size and the anion becoming less polarised down the group.

Mark awarded = (a) (i) 1/2, (ii) 0/1, (iii) 3/4, (iv) 2/2
Mark awarded = (b) 0/2
Mark awarded $=(\mathrm{c}) 1 / 1$
Total marks awarded = $\mathbf{7}$ out of 12

Example candidate response - I	Examiner comments
(a) Magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, is very soluble in water. When a hot saturated solution of magnesium nitrate is cooled, crystals of the hydrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$; are formed. In the crystals, six water molecules bond to each Mg^{2+} ion, and some of these water molecules are also bonded to the nitrate ions. (i) Suggest the type of bonding that occurs between $\mathrm{H}_{2} \mathrm{O}$ and Mg^{2+}, \qquad dative covaleut bond $\mathrm{H}_{2} \mathrm{O}$ and NO_{3}^{-}. \qquad hydrogen bond \qquad (ii) Describe the arrangement of the water molecules around the Mg^{2+} ion. \qquad In octahedral shape. \qquad (iii) Describe in detail what you would observe when crystals. of. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are heated-in a boiling tube, gently at first.and then more stroingly. Write equations for any reactions that occur. \qquad \qquad 3 dhe water will evaporate leaving $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)$) in or fstalt fam - S Heatileg strongly will give assurif dhat at the $\mathrm{Hat} \psi_{2} \mathrm{O}$ is eveprated \qquad \qquad (iv) Calculate the percentage loss in mass when $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is heated strongly to constant mass. $\begin{equation*} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{NO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O} \tag{4} \end{equation*}$ (b) Explain why the Group 2 nitrates become more stable to heat down the group. increas.e..... as.... dhe vatence sholl increases so . 5 thene is....................traction. As a result polarisationdecreases as lattice evergy and ludration energy decrease. (c) Magnesium nitrate and silver nitrate, AgNO_{3}, decompose on heating to produce the same gases. Silver nitrate also produces silver metal during decomposition. Write an equation for the decomposition.of AgNO_{3}. $\begin{equation*} \mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}+\mathrm{NO}_{3}^{-} \tag{6} \end{equation*}$	(1) Both answers are correct. 'lon-dipole forces' would be a valid alternative to both of these answers. Mark for (a) (i) $=2 / 2$ (2) Correct answer given. Mark for (a) (ii) = $1 / 1$ (3) One correct equation for the dehydration of the salt, but both equations are required for the mark. Only one viable observation ('water will evaporate') is given. The candidate does not describe the decomposition of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$. Mark for (a) (iii) $=1 / 4$ (4) The calculation has not been attempted. The correct answer, 84.3\%, without working, would have been awarded full marks. Mark for (a) (iv) $=0 / 2$ (5) A mark is awarded for the ionic size increasing going down the group. The second mark is not awarded, as there is no mention of less distortion (less polarisation) of the anion by the cation down the group. Mark for (b) $=1 / 2$ 6 The candidate does not identify the gases produced, oxygen and nitrogen dioxide, from the nitrate ion. $\text { Mark for }(c)=0 / 1$ Total marks awarded = 5 out of 12

How the candidate could have improved their answer
(a) (iii) The candidate should have given the equation for the decomposition of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, which results in $\mathrm{MgO}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$. More viable observations should have been included: a brown gas is seen and a white solid remains at the end of the experiment.
(a) (iv) The candidate needed to recall that MgO is produced during the decomposition of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ in (a) (iii) and use this information in their calculation, showing clear working, to give 84.3%.
(b) The second mark could have been gained if the candidate had stated that there is less distortion (less polarisation) of the anion by the cation down the group.
(c) A balanced equation for the decomposition of copper(II) nitrate should have been given.

Mark awarded $=$ (a) (i) 2/2, (ii) $\mathbf{1 / 1}$, (iii) $\mathbf{1 / 4}$, (iv) $\mathbf{0 / 2}$
Mark awarded $=(b) \mathbf{1 / 2}$
Mark awarded = (c) 0/1
Total marks awarded =5 out of 12

Common mistakes candidates made in this question

(a) (i) Common errors for $\mathrm{H}_{2} \mathrm{O}$ and Mg^{2+} were covalent and ionic. More candidates were awarded the mark for the second part of the question (hydrogen bonding) than the first.
(a) (ii) Many candidates just wrote 'hexagonal'.
(a) (iii) Many candidates omitted viable observations in the decomposition and dehydration of magnesium nitrate.

There were a number of unbalanced equations. For example, equations where the water was omitted or not balanced:

$$
\begin{aligned}
& \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{MgO}+2 \mathrm{NO}_{2}+\mathrm{O}_{2}
\end{aligned}
$$

Some candidates thought the decomposition product was $\mathrm{Mg}(\mathrm{OH})_{2}$.
(a) (iv) Common errors were 15.7% (\% of mass remaining), 42.1% (thought that the final solid was $\left.\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\right)$, and $72.8\left(\mathrm{M}_{\mathrm{r}}\right.$ of 148.3 for $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ used instead of 256.3).
(b) Some candidates answered in terms of atomic, rather than cationic, size and did not clearly specify that the anion was undergoing polarisation.
(c) Some candidates did not read the question carefully and gave $\mathrm{Ag}_{2} \mathrm{O}$ as the product.

Question 2

Example candidate response - high

Examiner comments

(1) The correct definition is given.
(a) Explain what is meant by the term weak acid.

(b) The $\mathrm{p} K_{\mathrm{a}}$ values of four acids are listed below.

acid	structural formula	$p \mathrm{~K}_{\mathrm{a}}$
1	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	4.8
2	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	4.9
3	$\mathrm{CH}_{3} \mathrm{CHClCO}_{2} \mathrm{H}$	2.8
4	$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	4.0

(i) State the mathematical relationship between $\mathrm{p} K_{\mathrm{a}}$ and the acid dissociation constant K_{a}.
...pka $=$ - Log........ ka)
2
(ii) With reference to acidity, explain the difference in $\mathrm{p} K_{\mathrm{a}}$ values between

- acid 1 and acid 2 ,
(3)
...acid 2ls...less acidic...that....acid..........ecause of its more powerful. inductive .eflect:.Therefore its ka is lower and ints................is...greenter...
- acid 2 and acid 3,

(4)

- acid 3 and acid 4 .
acod 3 more acodn Han acid 4 , because the chlorne alom is closes He 5

Mark for (a) = $1 / 1$
(2) The correct relationship is shown. Candidates do not need to indicate that the logarithm is base 10 so $\mathrm{pKa}=-\operatorname{logKa}$ would be credited.

Mark for (b) (i) $=1 / 1$
(3) The correct trend in acidity is given without an explanation.
Candidates were expected to state that acid 2 is less acidic due to the presence of a larger electrondonating (alky/R) group.
(4) An excellent answer. Candidates did not need to mention that the presence of the Cl electron-withdrawing weakens the $\mathrm{O}-\mathrm{H}$ bond.
(5) The correct answer is given. The candidate could have extended their answer to state this weakens the $\mathrm{O}-\mathrm{H}$ bond making it easier for the acid to dissociate.

Mark for (b) (ii) $=2 / 3$

Example candidate response - high, continued	Examiner comments
(c) (i) Draw a fully labelled diagram of the equipment needed to measure the voltage of an electrochemical cell consisting of the standard hydrogen electrode and the standard $\mathrm{Cu} / \mathrm{Cu}^{2+}$ electrode. at room temperature (298 K) (ii) For the cell drawn in (i), calculate the $E_{\text {cell }}^{e}$ and state which electrode is positive. $\begin{array}{ll} \mathrm{Cu}^{2+}+2 e^{-} \rightleftharpoons \mathrm{Cu} & E^{*}=+0.34 \mathrm{~V} \\ \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{H}^{+}+2 e^{-} \quad & E=0.00 \mathrm{~V} \\ E_{\text {cell }}^{e}=\ldots & +0.34 \end{array}$	6 Full marks for a correct, fully labelled diagram. Examiners ignored the label 'highly resistant electrode' and credited ' V ' for voltmeter and salt bridge for the first mark. $\mathrm{Cu}^{2+}(\mathrm{aq})$ was accepted as an alternative for CuSO_{4} for the second mark. Likewise, $\mathrm{H}^{+}(\mathrm{aq})$ for HCl for the third mark. Pt alone +1 atm is acceptable for the fourth mark. Mark for (c) (i) $=4 / 4$ (7) A correct answer. Mark for (c) (ii) $=1 / 1$
(d) A monobasic acid, \mathbf{D}, has $K_{\mathrm{a}}=1.23 \times 10^{-5} \mathrm{moldm}^{-3}$. (i) Calculate the pH of a $0.100 \mathrm{moldm}^{-3}$ solution of \mathbf{D}. $\begin{aligned} k_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[D]},\left[\mathrm{H}^{+}\right] & =\sqrt{[D] \times[\mathrm{ku}]} \\ & =\sqrt{(0.1)\left(1.23 \times 10^{-}\right)} \\ & =1.11 \times 10^{-3} \end{aligned}$ $\begin{align*} p H= & -\log _{10}\left(\left[\mathrm{H}^{+}\right]\right) \\ = & -\log _{10}\left(1.11 \times 10^{-3}\right) \\ = & 2.95 \\ & \mathrm{pH}=\ldots 2.95 \tag{2} \end{align*}$ (ii) An electrochemical cell similar to the one you have drawn in (c)(i) was set up using a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of D in the hydrogen electrode instead of the standard solution. Use the data and the Nernst equation, $E=E^{\ominus}+0.059 \log \left[\mathrm{H}^{+}(\mathrm{aq})\right]$, to calculate the new $E_{\text {cell }}$ in this experiment. $\begin{align*} E_{\text {cell }} & =E_{\text {rechued }}^{*}-E_{\text {oridised }} \\ E_{\text {cell }} & =0.34-\left(0+0.059 \log \left(1.11 \times 10^{-3}\right)\right) \tag{9}\\ & =0.34-(-0.17)=0.51 \mathrm{~V} \end{align*}$ $\begin{equation*} E_{\text {cell }}=\ldots 0.5 i \tag{2} \end{equation*}$	8 Clear working with the correct answer given. A minimum of two significant figures is required here. Mark for (d) (i) $=2 / 2$ (9) The candidate uses the Nernst equation correctly to give the correct answer. Clear working given. Mark for (d) (ii) $=2 / 2$ Total marks awarded = 13 out of 14

How the candidate could have improved their answer
(b) (ii) The candidate should have stated that acid 2 is less acidic due to the presence of a larger electrondonating (alkyl/R) group. This answer could have been extended to mention that this will strengthen the $\mathrm{O}-\mathrm{H}$ bond in acid 2. This means the $\mathrm{O}-\mathrm{H}$ bond in acid 2 is more difficult to dissociate.

In the comparison between acid 3 and acid 4, the candidate could have extended their answer and stated that this weakens the $\mathrm{O}--\mathrm{H}$ bond in acid 3 making it easier for the acid to dissociate.

Mark awarded = (a) 1/1
Mark awarded $=($ (b) (i) $1 / 1$, (ii) $2 / 3$
Mark awarded $=($ (c) (i) $4 / 4$, (ii) $1 / 1$
Mark awarded $=(\mathrm{d})(\mathrm{i}) \mathbf{2 / 2}$, (ii) $\mathbf{2 / 2}$
Total marks awarded = 13 out of 14

Example candidate response - middle	Examiner comments
2 Ethanoic acid is a weak acid. (a) Explain what is meant by the term weak acid: Acid which disscoiats pactiolly in a solution to form a low conantration of H^{+}ion. (b) The $\mathrm{p} K_{\mathrm{a}}$ values of four acids are listed below. (i) State the mathematical relationship between $\mathrm{p} K_{\mathrm{a}}$ and the acid dissociation constant K_{a}. $\begin{equation*} k_{a}=-\operatorname{lq}(k a) .-\log _{10} K a . \tag{2} \end{equation*}$ (ii) With reference to acidity, explain the difference in $\mathrm{p} K_{\mathrm{a}}$ values between - acid 1 and acid 2, Ethyl groups \& acid 2 is more elefion releasing then mothyl grap \& acid 1. Bonding between $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}$and H^{+}B stayger and so., * acid 2 dissociaus less oxtersiely then acid 1 . - acid 2 and acid ${ }^{3}$ cectomative atom (4) Acid 3 has electromative atorin atom which is electron withdrawing, stiblitiong Am anion of acid 3. Acid 3 ionizes mose extensiely then acid 2.. - acid 3 and acid 4 . 5 The position of chlorin atom in acid 3 is at corbon atom.... ajacant to co - grop whilh for aeid 4 , th chloin ..atom...1s furthr from CO_{2}^{-}grap. Anion of acid 3 is mare stoble then that of ${ }^{[3]}$ acid 4 .	(1) A correct definition. Mark for $(a)=1 / 1$ (2) A correct answer. Mark for (b) (i) $=1 / 1$ (3) A correct answer. Examiners allowed 'dissociates less extensively' for 'less acidic'. (4) A correct answer. Examiners allowed 'ionises more extensively' for 'more acidic'. (5) The candidate does not link the relative acidity of the acids to their correct reasoning for why acid 3 is more acidic than acid 4. Examiners ruled that the anion is more stable' was not sufficient for 'more acidic' here. Mark for (b) (ii) $=2 / 3$

Example candidate response - middle, continued	Examiner comments
(c) (i) Draw a fully labelled diagram of the equipment needed to measure the voltage of an electrochemical cell consisting of the standard hydrogen electrode and the standard $\mathrm{Cu} / \mathrm{Cu}^{2+}$ electrode. (ii) For the cell drawn in (i), calculate the $E_{\text {cell }}^{\bullet}$ and state which electrode is positive. $E_{\text {cell }}^{e}=\ldots \ldots34 \vee$ identity of the positive electrode (d) A monobasic acid, \mathbf{D}, has $K_{\mathrm{a}}=1.23 \times 10^{-5} \mathrm{moldm}^{-3}$. (i) Calculate the pH of a $0.100 \mathrm{moldm}^{-3}$ solution of \mathbf{D}. $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{(0.1)\left(1.23 \times 10^{-5}\right)}=1.109 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}} \\ & \therefore p H=-\lg \left(1.109 \times 10^{-3}\right)=2.96 \end{aligned}$ $\begin{equation*} \mathrm{pH}=\ldots \quad 2.96 \tag{2} \end{equation*}$ (ii) An electrochemical cell similar to the one you have drawn in (c)(i) was set up using a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of \mathbf{D} in the hydrogen electrode instead of the standard solution. Use the data and the Nernst equation, $E=E^{\bullet}+0.059 \log \left[\mathrm{H}^{+}(\mathrm{aq})\right]$, to calculate the new $E_{\text {cell }}$ in this experiment. $\begin{aligned} E & =0.34+0.059 \lg \left(1.109 \times 10^{-3}\right) \\ & =0.166 \mathrm{~V} \end{aligned}$ $\begin{equation*} E_{\text {cat }}=\ldots . \ldots . .166 \ldots \ldots . . \tag{2} \end{equation*}$	6 An excellent clear, labelled diagram. For marking points two and three, $\mathrm{Cu}^{2+}(\mathrm{aq})$ is an alternative to CuSO_{4} and H^{+}to $\mathrm{HCl}(\mathrm{aq})$ here. Mark for (c) (i) $=4 / 4$ (7) The correct value for the cell potential, but the identity of the positive electrode should be copper. Mark for (c) (ii) $=0 / 1$ 8 Clear working shown and the correct answer is given. Mark for $(d)=2 / 2$ (9) One mark awarded. There is a sign error in the calculation. It should be: $\begin{aligned} & \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {red }}-\mathrm{E}_{\text {oxid }} \\ & \mathrm{E}_{\text {cell }}=0.34-(-0.17)= \\ & +0.51 \mathrm{~V} . \end{aligned}$ Mark for (d) (ii) $=1 / 2$ Total marks awarded = 11 out of 14

How the candidate could have improved their answer
(b) (ii) This candidate should have stated that acid 3 is more acidic than acid 4 (the consequence of $\mathrm{C} l$ atom being closer to the $-\mathrm{CO}_{2} \mathrm{H}$ group in acid 3).
(c) (ii) The copper electrode is positive here.
(d) (ii) The correct answer is +0.51 V . This is calculated as shown:

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {red }}-\mathrm{E}_{\text {oxid }} \\
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {red }}-0.059 \log _{10}\left(1.11 \times 10^{-3}\right) \\
& \mathrm{E}_{\text {cell }}=0.34-(-0.17)=+0.51 \mathrm{~V}
\end{aligned}
$$

Mark awarded = (a) $1 / 1$
Mark awarded $=($ b) (i) $1 / 1$, (ii) $2 / 3$
Mark awarded $=$ (c) (i) 4/4, (ii) 0/1
Mark awarded $=($ d) (i) 2/2, (ii) $1 / 2$
Total marks awarded = 11 out of 14

Example candidate response - low	Examiner comments
2 Ethanoic acid is a weak acid. (a) Explain what is meant by the term weak acid. weak acid dissociates to produce less H^{+}fons and doesn't ionise completely. (b) The $\mathrm{p} K_{\mathrm{a}}$ values of four acids are listed below. (i) State the mathematical relationship between $\mathrm{p} K_{\mathrm{a}}$ and the acid dissociation constant K_{a}. $\begin{equation*} P K_{a}=-\log _{10} \cdot K a \tag{2} \end{equation*}$ (ii) With reference to acidity, explain the difference in $\mathrm{p} K_{\mathrm{a}}$ values between - acid 1 and acid 2, Acid 2 is a slighty weak acld compared to acid al 1 as ethyl grovp is elecion withdinawing gea. \qquad - acid 2 and acid 3 , (3) higher the Pka value, Hasses the acidity, Therefore,.... Avid 3 \qquad ...Is.....storgee Auid than Auid 2 due to The ethyl group present. - acid 3 and acid. 4. 1n Aud 2 ind Ci fin Atiod 3 which is electoondonatiggroup. \qquad Aid 3 is acidlc than Accid 4 as ethere is ...presentinn Auid 3. \qquad	(1) A correct definition. Mark for $(\mathrm{a})=1 / 1$ (2) The correct answer. Mark for (b) (i) $=1 / 1$ (3) The candidate is awarded credit for the correct trend in acidity for the three bullet points, but has given incorrect reasoning. Acid 1 is more acidic than acid 2 due to the smaller electron donating alkyl group. Acid 3 is more acidic than acid 2 due to the presence of the electron-withdrawing Cl group. Acid 3 is more acidic than acid 4 since the Cl group is closer to the $\mathrm{CO}_{2} \mathrm{H}$ group. Mark for (b) (ii) $=1 / 3$

Example candidate response - low, continued	Examiner comments
(ii) For the cell drawn in (i), calculate the $E_{\text {cell }}^{e}$ and state which electrode is positive. $E_{\text {cal }}^{\circ}=$ \qquad tesen +0.34 identity of the positive electrode \qquad copper \qquad (d) A monobasic acid, \mathbf{D}, has $K_{\mathrm{a}}=1.23 \times 10^{-5} \mathrm{moldm}^{-3}$. (i) Calculate the pH of a $0.100 \mathrm{moldm}^{-3}$ solution of \mathbf{D}. $P H=P K_{a}+\log _{10}\left[\frac{\text { salt }}{A \text { And }}\right]$ $\begin{align*} & k_{a}=10^{P_{\mathrm{F}_{a}}} \quad H_{+}=1 \\ &= P H=-\log _{p}\left[H^{+}\right] \tag{6}\\ &=5 r^{-5} \end{align*}$ $\begin{aligned} P K_{a} & =-\log _{10} 1.23 \times 10^{-5} \quad P_{K_{a}}=-\log 1.23 \times 10^{-5} \\ & =-8.99 \times 10^{-7} \longrightarrow \end{aligned}$ $=-8.99 \times 10^{-7}$ \qquad $\mathrm{pH}=$ \qquad [2] (ii) An electrochemical cell similar to the one you have drawn in (c)(i) was set up using a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of \mathbf{D} in the hydrogen electrode instead of the standard solution. Use the data and the Nernst equation, $E=E^{\ominus}+0.059 \log \left[\mathrm{H}^{+}(\mathrm{aq})\right]$, to calculate the new $E_{\text {cell }}$ in this experiment. $\begin{aligned} & =0.34+0.059 \log \sqrt{0.100} \\ & =0.3105 \end{aligned}$ $E_{c a t}=0 \cdot 3105 \mathrm{~V}[2]$ [Total: 14]	(4) Two marks are awarded for marking points three and four. The presence of the 'cell' in the circuit is a contradiction so negates the first marking point. For the second marking point, the solution in the copper half-cell should have been identified as Cu^{2+} or CuSO_{4}. Mark for (c) (i) $=2 / 4$ (5) The correct answer is given. Mark for (c) (ii) $=1 / 1$ (6) An incorrect answer. D is a weak acid (very small K_{a}) so the pH is calculated as shown in the mark scheme. The correct answer, $\mathrm{pH}=2.96$, should be given to a minimum of two significant figures. Mark for (d) $=0 / 2$ (7) An incorrect answer. The candidate should have used 1.11×10^{-3} for the $[\mathrm{H}+]$ and the Nernst equation is not used correctly. The correct answer is +0.51 V . Mark for (a) (i) $=0 / 2$ Total marks awarded = 6 out of 14

How the candidate could have improved their answer

(b) (ii) The candidate should have explained the difference in acidity as shown:

Acid 1 is more acidic than acid 2 due to the smaller electron donating alkyl group. Acid 3 is more acidic than acid 2 due to the presence of the electron-withdrawing Cl group. Acid 3 is more acidic than acid 4 since the Cl group is closer to the $\mathrm{CO}_{2} \mathrm{H}$ group.
(c) (i) The candidate should have had no cell present in their circuit and the solution in the copper half-cell should have been identified as Cu^{2+} or CuSO_{4}.
(d) (i) The correct answer is 2.96 . This is calculated as shown:
$\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}} . \mathrm{c}\right)=\sqrt{ }\left(1.23 \times 10^{-5} \times 0.1\right)=1.11 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{pH}=2.96$
(d) (ii) The candidate should have used $1.11 \times 10-3$ for the $[\mathrm{H}+]$ and the Nernst equation is not used correctly. The correct answer is +0.51 V . This is calculated as shown:

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {red }}-\mathrm{E}_{\text {oxid }} \\
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {red }}-0.059 \log _{10}\left(1.11 \times 10^{-3}\right) \\
& \mathrm{E}_{\text {cell }}=0.34-(-0.17)=+0.51 \mathrm{~V}
\end{aligned}
$$

Mark awarded = (a) 1/1
Mark awarded $=($ (b) (i) $1 / 1$, (ii) $1 / 3$
Mark awarded =(c) (i) 2/4, (ii) $1 / 1$
Mark awarded $=(\mathrm{d})(\mathrm{i}) \mathbf{0 / 2}$, (ii) $\mathbf{0 / 2}$
Total marks awarded = 6 out of 14

Common mistakes candidates made in this question

(a) A few candidates incorrectly described a weak acid in terms of dissolving, that it is a substance that was partially dissolved.
(b) (i) A common error was stating that $\mathrm{p} K_{\mathrm{a}}$ had an inverse proportional to K_{a}.
(b) (ii) A number of candidates did not comment on the acidity of the two acids. For marking point one, many candidates did not compare the relative electron-donating ability of alkyl groups. For marking points two and three, some candidates said the Cl group acted as an electron-donating group. Many candidates' explanations lacked clarity.
(c) (i) Some common errors were:

- the inclusion of a battery in the external circuit
- omitting the salt bridge from their diagram
- labelling the solutions as $\mathrm{Cu}^{2+} / \mathrm{Cu}$ or $\mathrm{H}_{2} / \mathrm{H}^{+}$instead of Cu^{2+} and H^{+}
- omitting a standard condition, 1 atm or $1 \mathrm{moldm}^{-3}$.
(c) (ii) Some candidates identified the hydrogen half-cell as the positive electrode.
(d) (i) A common error was 5.91 (no square root taken).
(d) (ii) The electrode potential and the cell potential were confused. Common errors seen were $0.40,0.17$ and -0.17 (worth 1 mark) and 0.28 (no marks).

Question 3

Example candidate response - high	Examiner comments
3 (a) 2-bromopropane can be used to synthesise methylethylamine and 2-methylpropylamine. reaction 1 methylethylamine $\searrow C \equiv N$ 2-bromopropane reaction 2 (i) Draw the structure of the intermediate \mathbf{X} in the box above. (ii) Suggest reagents and conditions for - reaction 1, alcoholic NH_{3}. (2) - reaction 2, alcoholic KCN , reflux - reaction 3 . \qquad LiAlH_{4} (b) (i) Write an equation showing why aqueous solutions of ethylamine are alkaline. $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{N}} \mathrm{H}_{3} \tag{1} \end{equation*}$ (ii) Compare the basicities of ethylamine and ammonia. Explain your answer. Ethylamine is more basic than ammonia. Ethylamine contains ethylgwup, which is an electron donating group. Lone pair on N is more readily available to H^{+}ron compared to ammonia.	(1) A correct answer. Mark for (a) (i) $=1 / 1$ (2) Two marks for reactions 2 and 3 . The candidate omits the need to heat in a sealed tube for reaction 1. Mark for (a) (ii) $=2 / 3$ (3) An incorrect answer. This shows ethylamine acting as a base, rather than why aqueous ethylamine solutions are alkaline (an equation releasing hydroxide ions). Mark for (b) (i) $=0 / 1$ (4) A correct answer. Mark for (b) (ii) $=2 / 2$

Example candidate response - high, continued	Examiner comments
(c) Solutions containing mixtures of amines and their salts are buffer solutions. (i) Explain what is meant by the term buffer solution. A solution consists of positive and negatively charged rons which are readily. to take up \& H^{+}rons and oH H^{-}rons to resist small change in pH when a small amount of H^{+}rous and OH^{-}cons are added to the solution. (ii) Write two equations to show how a solution containing a mixture of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ acts as a buffer. $\mathrm{CH}_{3} \mathrm{NH}_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \text { (}$ \qquad $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3}^{+} \mathrm{NH}_{3}$	(5) A correct answer. Mark for (c) (i) = 1/1 (6) A correct answer. The equations can be ionic or not ionic. Mark for (c) (ii) $=2 / 2$ Total marks awarded = 8 out of 10

How the candidate could have improved their answer
(a) (ii) The conditions for reaction 1 should be 'alcoholic NH_{3} heated in a sealed tube'.
(b) (i) The candidate should have included an equation showing how aqueous ethylamine solutions are alkaline (an equation releasing hydroxide ions):

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}
$$

Mark awarded $=($ (a) (i) $1 / 1$, (ii) $2 / 3$
Mark awarded $=($ b) (i) $0 / 1$, (ii) $2 / 2$
Mark awarded $=(\mathrm{c})(\mathrm{i}) 1 / 1$, (ii) $\mathbf{2 / 2}$
Total marks awarded = 8 out of 10

Example candidate response - middle

3 (a) 2-bromopropane can be used to synthesise methylethylamine and 2-methylpropylamine.

2-bromopropane

(i) Draw the structure of the intermediate \mathbf{X} in the box above.
(ii) Suggest reagents and conditions for

- reaction 1, heat with ethanolic ammonia (NH3 (etheraul.)
- reaction 2, heat with ethandic KCN 2
- reaction 3. pass over nickel catalyst with hydrgen gas.
(b) (i) Write an equation showing why aqueous solutions of ethylamine are alkaline.

(ii) Compare the basicities of ethylamine and ammonia. Explain your answer.
 donating group and increases. the ability of nitrogen to form dative. bond with proton while hydrogen is not as strong of ano electron donating group as ethyl............. 4
(c) Solutions containing mixtures of amines and their salts are buffer solutions.
(i) Explain what is meant by the term buffer solution.

A solutron theet keeps pH constont when small amounts of al....................................... or acid are added.
(ii) Write two equations to show how a solution containing a mixture of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ acts as a buffer.

$$
\begin{align*}
& \text {..................... } 6 \\
& \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}_{\text {caqu }}+\mathrm{NaOH} \text { (aqu }-\mathrm{CH}_{3} \mathrm{NH}_{2} \text { (aq) }+\mathrm{NaCl} \text { (aq) }+\mathrm{H}_{2} \mathrm{O} \tag{2}
\end{align*}
$$

[Total: 10]

Examiner comments

(1) A correct answer.

Mark for (a) (i) = 1/1
(2) Two marks for reactions 2 and 3 . The candidate omits the need to heat in a sealed tube for reaction 1.
Mark for (a) (ii) $=2 / 3$
(3) Incorrect answer. This shows ethylamine acting as a base, rather than why aqueous ethylamine solutions are alkaline (an equation releasing hydroxide ions).
Mark for (b) (i) $=0 / 1$
(4) One mark is awarded for 'ethylamine being more basic due to the presence of the electron-donating ethyl group'. The candidate should also have stated that this makes the lone pair on the N more available to accept a proton.
Mark for (b) (ii) $=1 / 2$
(5) No mark, as the candidate states that a buffer solution 'keeps the pH constant'. A buffer solution minimises changes in pH when small amounts of acid and alkali are added to it.
Mark for (c) (i) $=0 / 1$
(6) Both equations are correct.
Mark for (c) (ii) $=2 / 2$
Total marks awarded = 6 out of 10

How the candidate could have improved their answer
(a) (ii) The conditions for reaction 1 should be alcoholic NH_{3} heated in a sealed tube.
(b) (i) The candidate should have included an equation showing how aqueous ethylamine solutions are alkaline (an equation releasing hydroxide ions):

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}
$$

(b) (ii) The second mark would have been awarded if the candidate had stated that this makes the lone pair on the N (in ethylamine) more available to accept a proton.
(c) (i) A buffer solution should be described as a solution that minimises changes in pH when small amounts of acid and alkali are added to it.

Mark awarded $=($ (a) (i) $1 / 1$, (ii) $2 / 3$
Mark awarded $=(b)$ (i) $0 / 1$, (ii) $1 / 2$
Mark awarded $=(\mathrm{c})(\mathrm{i}) \mathbf{0 / 1}$, (ii) $\mathbf{2 / 2}$
Total marks awarded = 6 out of 10

(i) Draw the structure of the intermediate \mathbf{X} in the box above.
(ii) Suggest reagents and conditions for

- reaction 1, Ammonia gas excess sealed tube
- reaction 2, aqueouSNaCN with trace ofalcohd
- reaction 3. Sn +HCl
(b) (i) Write an equation showing why aqueous solutions of ethylamine are alkaline.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+} 3$
(ii) Compare the basicities of ethylamine and ammonia. Explain your answer.

Ethylamine is more basic ascompared toammonia because the alkyl group is election releasing which facilitates the removal d f a lone pair of electrons.

$$
4
$$

[2]
(c) Solutions containing mixtures of amines and their salts are buffer solutions.
(i) Explain what is meant by the term buffer solution.

A solution which resists changes in pt when small. quantities of acidor alkali are added to it.
(ii) Write two equations to show how a solution containing a mixture of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ acts as a buffer.

$\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}+\mathrm{OH}^{-} \rightarrow \mathrm{NH}_{4}+\mathrm{Cl}^{-}$

Examiner comments

(1) Correct structure identified.
Mark for (a) (i) = 1/1
(2) Credit is awarded for identifying the main reagent in reactions 1 and 2. The candidate omits the need to heat reactions 1 and 2 . The reagents $\mathrm{Sn} / \mathrm{HCl}$ were not accepted for reaction 3. LiAlH_{4} or $\mathrm{H}_{2} / \mathrm{Ni}$ catalyst was required.
Mark for (a) (ii) $=1 / 3$
(3) An incorrect answer. This shows ethylamine acting as a base rather than why aqueous ethylamine solutions are alkaline (an equation releasing hydroxide ions).
Mark for (b) (i) $=0 / 1$
(4) One mark is awarded for 'ethylamine being more basic due to the presence of the electron-releasing alkyl group'. The candidate should have stated that this makes the lone pair on the N more available to accept a proton.
Mark for (b) (ii) $=1 / 2$
(5) A correct answer.

Mark for (c) (i) $=1 / 1$
(6) Both equations are incorrect. The first equation has an extra $\mathrm{C} l$ ion on the right. The second equation has incorrect products.
Mark for (c) (ii) $=0 / 2$
Total marks awarded = 4 out of 10

How the candidate could have improved their answer
(a) (ii) The candidate omitted the need to heat for reactions 1 and 2. LiAlH_{4} or $\mathrm{H}_{2} / \mathrm{Ni}$ catalyst was required for reaction 3.
(b) (i) The candidate should have included an equation showing how aqueous ethylamine solutions are alkaline (an equation releasing hydroxide ions):

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}
$$

(b) (ii) The second mark could have been awarded for stating that this would make the lone pair on the N (in ethylamine) more available to accept a proton.
(c) (ii) The correct equations are shown:

Mark awarded $=(a)$ (i) $1 / 1$, (ii) $1 / 3$
Mark awarded $=($ b) (i) $0 / 1$, (ii) $1 / 2$
Mark awarded $=(\mathrm{c})(\mathrm{i}) \mathbf{1 / 1}$, (ii) $\mathbf{0 / 2}$
Total marks awarded = 4 out of 10

Common mistakes candidates made in this question

(a) (i) A few candidates included an additional CH_{2} group or NO_{2} group instead of CN group.
(a) (ii) Some common errors by candidates were:

- using $\mathrm{NH}_{3}(\mathrm{aq})$ instead of NH_{3} (alcoholic) in reaction 1
- omitting the need for high pressure as a condition in reaction 1
- the use of heat in reactions 1 and 2
- using HCN in reaction 2.
(b) (i) A common error was the equation $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$.
(b) (ii) Many candidates omitted sufficient detail about the lone pair on the nitrogen being more available to protonation or donation.
(c) (i) A common error was stating that a buffer solution maintains constant pH .
(c) (ii) Some candidates gave equations for $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{NH}_{2} \mathrm{Cl}$ ionising in water, and the formation of $\mathrm{CH}_{3} \mathrm{NH}_{2} \mathrm{Cl}$ as a product in the second equation, $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$.

Question 4

Example candidate response - high/middle 1

4 (a) There are two isomeric complexes with the formula $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{C} l_{2}$, one of which is an anti-cancer drug.
(i) Draw diagrams to show the three-dimensional structures of the two isomers.

(ii) Comment on the polarity of the two isomers of $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. Explain your answer.

Isenerovepsplas. Ide Structure is square planar. The 2 net dipoles on both isomers cancel out. They are both non..
xaloplatin is another successful anti-cancer drug in which the stereochemistry around the platinum atom is the same as that in $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl} l_{2}$.

oxaloplatin
(iii) Explain why there are no isomers of oxaloplatin

No cis trans isomers can exist because the rings 3
...prevent the angles..............een the two ends.............the
rings changing. The oecd fore.g cannot be across
each other
(b) Only one structure of the complex $\left[\mathrm{Ni}\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Cl} l_{2}\right]$ is known. $\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}_{3} \mathrm{P}\right.$ is a monodentate ligand)
(i) What does this indicate about the stereochemistry around the nickel atom?

(ii) Draw a three-dimensional diagram showing the structure of this complex.

(5)

Examiner comments

(1) The correct structures of the cis- and transisomers are given.

Mark for (a) (i) = $2 / 2$
(2) An incorrect answer. Only the dipoles on the trans isomer cancel. The cis isomer is polar.

Mark for (a) (ii) $=0 / 1$
(3) This answer is not sufficient for the mark. The candidate should have stated that the mirror image of this isomer is superimposable/ the same.

Mark for (a) (iii) $=0 / 1$
4) A correct answer.

Mark for (b) (i) = 1/1
(5) A correct threedimensional tetrahedral diagram.

Mark for (b) (ii) $=1 / 1$

Total marks awarded = 4 out of 6

How the candidate could have improved their answer
(a) (ii) The candidate should have stated that the cis is (more) polar due to both $\mathrm{C} t^{(-) .}$on the same side or the cis is (more) polar as the dipoles do not cancel.
(a) (iii) The candidate should have stated that the mirror image of this isomer is the superimposable.

Mark awarded = (a) (i) 2/2, (ii) 0/1, (iii) 0/1
Mark awarded = (b) (i) 1/1, (ii) 1/1
Total marks awarded $=4$ out of 6
Example candidate response - high/middle 2

4 (a) There are two isomeric complexes with the formula $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}$, one of which is an anti-cancer drug.
(i) Draw diagrams to show the three-dimensional structures of the two isomers.

(ii) Comment on the polarity of the two isomers of $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. Explain your answer.
 of the electrongative chloin atoms are at th sam sid of [1] complex.
Oxaloplatin is another successful anti-cancer drug in which the stereochemistry around the platinum atom is the same as that in $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$.

(iii) Explain why there are no isomers of oxaloplatin.

(b) Only one structure of the complex $\left[\mathrm{Ni}\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}\right]$] known. $\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}_{3} \mathrm{P}\right.$ is a monodentate ligand $)$
(i) What does this indicate about the stereochemistry around the nickel atom? It shows a te...........andral shape and has....................................... 4 [1]
(ii) Draw a three-dimensional diagram showing the structure of this complex.

(1) A correct answer.

Mark for (a) (i) $=2 / 2$
(2) A correct answer.

Mark for (a) (ii) = 1/1
(3) This answer is not sufficient. The required answer is that its mirror image is the same or superimposable.

Mark for (a) (iii) $=0 / 1$
(4) A correct answer.

Mark for (b) (i) $=1 / 1$
(5) An incorrect 3D structure, as the two bonds outside the plane should be adjacent to one another.

Mark for (b) (ii) $=0 / 1$

How the candidate could have improved their answer
(a) (iii) The candidate should have stated that the mirror image of this isomer is the superimposable.
(b) (ii) A three-dimensional tetrahedral structure was required here. The two bonds outside the plane should be adjacent to one another, as shown.

Mark awarded = (a) (i) 2/2, (ii) 1/1, (iii) 0/1
Mark awarded = (b) (i) 1/1, (ii) 0/1
Total marks awarded = 4 out of 6

Example candidate response - low	Examiner comments
4 (a) There are two isomeric complexes with the formula $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$, one of which is an anti-cancer drug. (i) Draw diagrams to show the three-dimensional structures of the two isomers. 1	(1) The diagrams in (i) are incorrect and in (ii) the candidate gives an incorrect answer. The candidate could have received an error carried forward mark from (a) (i) if they had added 'as the dipoles do not cancel'.
(ii) Comment on the polarity of the two isomers of $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. Explain your answer. \qquad \qquad Oxaloplatin is another successful anti-cancer drug in which the stereochemistry around the platinum atom is the same as that in $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. (iii) Explain why there are no isomers of oxaloplatin. Because dhere is no possibilify to switch the atoms	Mark for (a) (i) $=0 / 2$ Mark for (a) (ii) $=0 / 1$ (2) This answer is not sufficient for the mark. The required answer is that its mirror image is the same or superimposable. Mark for (a) (iii) $=0 / 1$
(b) Only one structure of the complex $\left[\mathrm{Ni}\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}\right]$ is known. $\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R} 3 \mathrm{P}\right.$ is a monodentate ligand) (i) What does this indicate about the stereochemistry around the nickel atom? \qquad It will either have a triquol a a plaur shape. (ii) Draw a three-dimensional diagram showing the structure of this complex.	(3) 'Tetrahedral' is the answer required. Mark for (b) (i) $=0 / 1$ (4) An incorrect 3D structure, as the two bonds outside the plane should be adjacent to one another. Mark for (b) (ii) $=0 / 1$ Total marks awarded = 0 out of 6

How the candidate could have improved their answer
(a) (i) The candidate should have drawn the two different square planar isomers here. Examiners wanted candidates to label the isomers as cis and trans.

(cis)

(trans)
(a) (ii) The candidate should have stated that the cis is (more) polar due to both $\mathrm{C} l^{\left(\delta^{(-)}\right)}$on the same side or the cis is (more) polar as the dipoles do not cancel. The candidate could have received an error carried forward mark from two tetrahedral structures in (a) (i) if they had stated that 'both isomers have the same/similar polarity as their dipoles do not cancel'.
(a) (iii) The candidate should have stated that the mirror image of this isomer is the same or superimposable.
(b) (i) Tetrahedral is the only correct answer here.
(b) (ii) A three-dimensional tetrahedral structure was required. The two bonds outside the plane should be adjacent to one another as shown.

Mark awarded $=(a)$ (i) $0 / 2$, (ii) $0 / 1$, (iii) $0 / 1$
Mark awarded $=(b)$ (i) $0 / 1$, (ii) $0 / 1$

Total marks awarded $=0$ out of 6

Common mistakes candidates made in this question

(a) (i) Some candidates identified the structure as tetrahedral.
(a) (ii) Some candidates did not comment about dipoles. Some stated that the Pt^{2+} and $2 \mathrm{C} \tau$ charges cancel so no overall charge or polarity.
(a) (iii) Many candidates gave answers which were vague and not related to the structure of the complex.
(b) (i) Many candidates did not refer to any stereochemistry. A common error was 'cis-trans' or 'optical isomerism'.
(b) (ii) Many candidates gave a square planar structure. Some common errors with a tetrahedral structure are shown here:

correct answer

common errors

Question 5

Example candidate response - high	Examiner comments
5 Cadmium ions form complexes with primary amines and with 1,2-diaminoethane. $\begin{array}{rlll} \mathrm{Cd}^{2+}(\mathrm{aq})+4 \mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) & \rightleftharpoons\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]^{2+}(\mathrm{aq}) & K_{\text {stab }}=3.6 \times 10^{6} & \text { equilibrium I } \\ \mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}(\mathrm{aq}) & \rightleftharpoons\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\right]^{2+}(\mathrm{aq}) & K_{\text {stab }}=4.2 \times 10^{10} & \text { equilibrium II } \end{array}$ (a) (i) Write an expression for the stability constant, $K_{\text {stab }}$, for equilibrium I , and state its units. $\mathrm{mol}^{-4} \mathrm{dm}^{12}$ Cadmium ions are poisonous and need to be removed from some water supplies. This is often done by adding a complexing agent. (ii) In a sample of ground water the concentration of $\mathrm{Cd}^{2+}(\mathrm{aq})$ is $1.00 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the concentration of $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})$ needed to reduce the concentration of $\mathrm{Cd}^{2+}(\mathrm{aq})$ in this dilute solution by a factor of one thousand. $\times 1000 \rightarrow 1 \times 10^{-7}$	1 A correct answer. Mark for (a) (i) $=2 / 2$ (2) An incorrect answer. The candidate does not calculate the new concentration of $\left[\mathrm{Cd}_{2+}\right]$ and $\left.\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right) 4\right]_{2+}\right]$ and substitute into their expression in (a) (i). The correct answer is 0.129 . Mark for (a) (ii) $=0 / 2$

\mid Example candidate response - high, continued
(b): Values for ΔH^{\ominus} and ΔG^{\ominus} for equilibrial and II, and the value of ΔS^{\ominus} for equilibrium
in the table below: All values are at a temperature of 298 K .
\qquadequilibrium $\Delta H^{\ominus} / \mathrm{kJmol}^{-1}$ $\Delta G^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$ $\Delta S^{\ominus} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ I -57.3 -37.4 $-66: 8$ II -56.5 -60.7 to be calculated

(i) Suggest a reason why the ΔH^{\ominus} values for the two equilibria are very similar.
(3)

In both complexes, 4 nitrogen atoms donate four lone pairs to male dative bonds with cadmium; So the energy released is very. [1] similar.
(ii) Calculate ΔS^{\bullet}.for equilibrium II.
$\Delta G=\Delta H-T \Delta S$
$(-60.7 \times 1000)=(-56.5 \times 1000)-(298)(\Delta S)$
$\Delta S^{\ominus}=\ldots .14 \cdot 1$
$\begin{aligned} \Delta S & =140.09395 \\ & =14.1 \mathrm{JK} \mathrm{Jmol}^{2}\end{aligned}$
(iii) Suggest a reason for the difference between the ΔS^{\ominus} you have calculated for equilibrium il and that for equilibrium I given in the table.
(5) Increase in entropy for equilibrium 2 because fewer mos of reactant (2)... converting to product (1)........ In equilibrium 1

$$
a c
$$

decrease in entropy because more mols of reactant (5) converting. [1] to product (1).
(iv) Which of the two complexes is the more stable? Give a reason for your answer.

The complex from equilibrium 2 because 'its formation is favored
6 energetically..... (ΔG is much more negative so reaction is more . [1] spontaneous in forward direction) and also because its equibe. has a higher kstab value

Examiner comments

(3) A correct reference to bond breaking or bond forming is credited here.

Mark for (b) (i) = 1/1
(4) A correct answer.

Mark for (b) (ii) = 1/1
(5) A correct answer. The examiners credited the answer of 'fewer moles of reactant were converted to the complex in equilibrium II'. They ignored the slight slip ('2') here.

Mark for (b) (iii) = 1/1
6 An excellent answer.
Mark for (b) (iv) = 1/1

Total marks awarded = 6 out of 8

How the candidate could have improved their answer

(a) (ii) The candidate did not calculate the new concentrations of $\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}{ }^{2+}\right]$ and $\left[\mathrm{Cd}^{2+}\right]$. These values should have been substituted into their expression in (a) (i). The correct answer is 0.129 as shown.

Mark awarded $=(a)$ (i) $\mathbf{2 / 2}$, (ii) $0 / \mathbf{2}$
Mark awarded $=(b)$ (i) $1 / 1$, (ii) $1 / 1$, (iii) $1 / 1$, (iv) $1 / 1$
Total marks awarded = 6 out of 8

Example candidate response - middle		
5 Cadmium ions form complexes with primary amines and with 1,2-diaminoethane.		
$\mathrm{Cd}^{2+}(\mathrm{aq})+4 \mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]^{2+}(\mathrm{aq})$	$K_{\text {stab }}=3.6 \times 10^{6}$	equilibrium I
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}{ }^{2+}(\mathrm{aq})\right.$	$K_{\text {stab }}=4.2 \times 10^{10}$	equilibrium II

(a) (i) Write an expression for the stability constant, $K_{\text {stab, }}$, for equilibrium I , and state its units.

[2]
Cadmium ions are poisonous and need to be removed from some water supplies. This is often done by adding a complexing agent.
(ii) In a sample of ground water the concentration of $\mathrm{Cd}^{2+}(\mathrm{aq})$ is $1.00 \times 10^{-4} \mathrm{moldm}^{-3}$.

Calculate the concentration of $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})$ needed to reduce the concentration of $\mathrm{Cd}^{2+}(\mathrm{aq})$. in this dilute solution by a factor of one thousand.

$$
\frac{1.00 \times 10^{-4} \times 4}{1000} \Rightarrow 4 \times 10^{-7}
$$

(2)
concentration of $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})=4 \times 10^{-7}$ moldm^{-3} [2]
(1) A correct answer.

Mark for (a) (i) = 2/2
(2) An incorrect answer. The candidate does not calculate the new concentration of $\left[\mathrm{Cd}_{2+}\right]$ and $\left.\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]_{2+}\right]$ and substitute into their expression in (a) (i).
The correct answer is 0.129 .

Mark for (a) (ii) $=0 / 2$

（iii）Suggest a reason for the difference between the ΔS^{\ominus} you have calculated for equilibrium II and that for equilibrium I given in the table．
\Rightarrow The ditterence in equilibrium of If and eavilibrtum莫．．．is becanofe equilibrium I is more rendondom and spontaneous than that of equilibrium π ［1］
（iv）Which of the two complexes is the more stable？Give a reason for your answer．

as stab is more and Gibbs energy also shows more energy or work is to be done in experiment II

Examiner comments

（3）This answer is not sufficient．The candidate needed to reference bond breaking or making in their answer．For example，the same number of bonds are forming and breaking．

Mark for（b）（i）$=0 / 1$
（4）A correct answer．
Mark for（b）（ii）$=1 / 1$
5 No marks．The candidate needed to answer in terms of the number of moles of reactants or quoting the molar ratio of reactants in equilibrial I and II．

Mark for（b）（iii）$=0 / 1$
（6）A correct answer．
Mark for（b）（iv）$=1 / 1$

Total marks awarded＝ 4 out of 8

How the candidate could have improved their answer

(a) (ii) The candidate did not calculate the new concentrations of $\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}{ }^{2+}\right]$ and $\left[\mathrm{Cd}^{2+}\right]$. These values should have been substituted into their expression in (a) (i). The correct answer is 0.129 as shown.
at start
at end

$$
\begin{array}{ccc}
\underset{1 \times 10^{-4}}{\mathrm{Cd}^{2}}+4 \mathrm{CH}_{3} \mathrm{NH}_{2} & \rightleftharpoons & {\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]^{2+}} \\
\mathbf{1} \times \mathbf{1 0}^{-7} & \boldsymbol{y} & \mathbf{0} \\
\mathbf{9 . 9 9 \times 1 0 ^ { - 5 }}
\end{array}
$$

$$
\begin{gathered}
K_{\text {stab }}=\frac{\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}^{2+}\right]}{\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]^{4}} \\
9.99 \times 10^{-5} /\left(\boldsymbol{y}^{4} \times 1 \times 10^{-7}\right)=3.6 \times 10^{6} \\
\text { and } \mathrm{y}={ }^{4} \sqrt{ }\left(9.99 \times 10^{-5}\right) /\left(1 \times 10^{-7} \times 3.6 \times 10^{6}\right)=\mathbf{0 . 1 2 9}
\end{gathered}
$$

(b) (i) The candidate should have referenced bond breaking and forming in their answer. For example, the same types of or similar bonds forming/breaking or the same number of bonds forming/breaking.
(b) (iii) The candidate needed to answer in terms of the number of moles of reactants. For example, fewer moles of reactants are forming the complex in equilibrium II than in equilibrium I.

Mark awarded = (a) (i) 2/2, (ii) 0/2
Mark awarded $=(b)$ (i) 0/1, (ii) $\mathbf{1 / 1}$, (iii) 0/1, (iv) $\mathbf{1 / 1}$

Total marks awarded = 4 out of 8

Example candidate response - low		
$\mathbf{5}$	Cadmium ions form complexes with primary amines and with 1,2 -diaminoethane:	
	$\mathrm{Cd}^{2+}(\mathrm{aq})+4 \mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]^{2+}(\mathrm{aq})$	$K_{\text {stab }}=3: 6 \times 10^{8}$
equilibrium I		
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\right]^{2+}(\mathrm{aq})$.	$K_{\text {stab }}=4.2 \times 1.0^{10}$	equilibrium II

(a) (i) Write an expression for the stability constant; $K_{\text {stab }}$, for equilibrium I, and state its units.

$$
K_{\text {sat }}=\frac{\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]}{[\mathrm{Cd}]\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]^{4}} \quad 1
$$

[2]
Cadmium ions are poisonous and need to be removed from some water supplies. This is often done by adding a complexing agent.
(ii) In a sample of ground water the concentration of $\mathrm{Cd}^{2+}(\mathrm{aq})$ is $1.00 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.

Calculate the concentration of $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})$ needed to reduce the concentration of $\mathrm{Cd}^{2+}(\mathrm{aq})$ in this dilute solution by a factor of one thousand.

Examiner comments

(1) One mark is awarded for giving the correct units. The mark for the stability constant expression has not been awarded as the charges have been omitted on the two ions.

Mark for (a) (i) $=1 / 2$
(2) An incorrect answer. The candidate does not calculate a new concentration of $\left[\mathrm{Cd}_{2+}\right]$ and $\left.\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]_{2+}\right]$ and substitute into their expression in (a) (i). The correct answer is 0.129 .

Mark for (a) (ii) $=0 / 2$

(i) Suggest a reason why the ΔH° values for the tyo:equilibria are very similar.

(ii) Calculate ΔS^{\bullet} for equilibrium II.

$$
\begin{aligned}
\text { (ii) Calculate } \Delta S^{\bullet} \text { for equilibrium II. } & =-56-5-12 \\
-60,700=-56500-(298(-66 x) & =14.1 \\
-4200=-298 x & \Delta S^{*}=\ldots \ldots . . .
\end{aligned}
$$

$\begin{aligned} x & =\frac{-4200}{14.298} \\ & =14.1\end{aligned}$
(iii) Suggest a reason for the difference between the ΔS° you have calculated for equilibrium II and that for equilibrium I given in the table.

More Equilibrium I has more ${ }^{-}$ ©
disorder ax a arrangement on its reactant wide while 2 has more. [1]
(iv) Which of the two complexes is the more stable? Give a reason for your answer.

[Total: 8]

Examiner comments

(3) An incorrect answer. The candidate needed to reference bond breaking or making. For example, the same number of bonds are forming and breaking.

Mark for (b) (i) $=0 / 1$
(4) A correct answer.

Mark for (b) (ii) $=1 / 1$
(5) This answer is not sufficient for the mark. The candidate needed to answer in terms of the number of moles of reactants or quoting the molar ratio of reactants in equilibrial I and II.

Mark for (b) (iii) $=0 / 1$
(6) A correct answer.

Mark for (b) (iv) $=1 / 1$
Total marks awarded = 3 out of 8

How the candidate could have improved their answer
(a) (i) The candidate should have included the charges for both ions in the stability constant, $K_{\text {stab }}$, expression.
(a) (ii) The candidate did not calculate the new concentrations of $\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}{ }^{2+}\right]$ and $\left[\mathrm{Cd}^{2+}\right]$. These values should have been substituted into their expression in (a) (i). The correct answer is 0.129 as shown.
$\begin{array}{lccc} & \mathrm{Cd}^{2} \\ \text { at start } & 1 \times 10^{-4} & 4 \mathrm{CH}_{3} \mathrm{NH}_{2} & \rightleftharpoons\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}\right]^{2+} \\ \text { at end } & \mathbf{1 \times 1 0 ^ { - 7 }} & \boldsymbol{y} & \\ \mathbf{0} & \mathbf{9 . 9 9 \times 1 0 ^ { - 5 }}\end{array}$

$$
K_{\text {stab }}=\frac{\left[\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{4}^{2+}\right]}{\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]^{4}}
$$

$9.99 \times 10^{-5} /\left(\boldsymbol{y}^{4} \times 1 \times 10^{-7}\right)=3.6 \times 10^{6}$
and $y={ }^{4} \sqrt{ }\left(9.99 \times 10^{-5}\right) /\left(1 \times 10^{-7} \times 3.6 \times 10^{6}\right)=\mathbf{0 . 1 2 9}$
(b) (i) The candidate should have referenced bond breaking and forming in their answer. For example, the same types of or similar bonds forming/breaking or the same number of bonds forming/breaking.
(b) (iii) The candidate needed to answer in terms of the number of moles of reactants. For example, fewer moles of reactants are forming the complex in equilibrium II than in equilibrium I.

Mark awarded = (a) (i) $1 / 2$, (ii) $0 / 2$
Mark awarded = (b) (i) 0/1, (ii) $\mathbf{1 / 1}$, (iii) 0/1, (iv) $\mathbf{1 / 1}$

Total marks awarded = 3 out of 8

Common mistakes candidates made in this question

(a) (i) A common error was putting charges outside the square brackets in the expression.
(a) (ii) Many candidates did not calculate the new [Cd^{2+}] correctly and used 1×10^{-4} instead 1×10^{-7} in their expression.
(b) (i) Many candidates omitted any reference to bond making/breaking.
(b) (ii) A common error was -14.1.
(b) (iii) Some candidates answered in terms of increased disorder of the product or increased entropy, rather than comparing the number of gaseous moles of the reactants.
(b) (iv) Many candidates gave a reason based on increased ΔS rather than larger $K_{\text {stab }}$ or more negative ΔG.

Question 6

Example candidate response - high	Examiner comments
6 Esterases are enzymes that hydrolyse esters. Enzymes can be quite specific in the structures of the substrates they act upon. For example, an esterase isolated from the mould Aspergillus niger will hydrolyse phenyl ethanoate, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, but not its isomer methyl benzoate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{CH}_{3}$. (a) Outline how enzymes catalyse reactions, and explain their specificity. Use diagrams in your answer where appropriate. Enzymes are biological catalysts. They reduce the activation energy for a reaction by providing an alternative pathway for reaction. Now many more substate molecules have the Ea required and reaction rate increases. Enzymes are higuly specific, with an active site only certain substrates can fit into. An en3yme-substrate complex...is formed the product is made and en zyme is recovered. unchanged.	(1) An excellent answer. The clear, labelled diagrams and the text obtain the essential marking point and all four of the other points on the mark scheme. Mark for $(a)=3 / 3$

Example candidate response - high, continued	Examiner comments
(b) Sample bottles of each of the isomers phenyl ethanoate and methyl benzoate have Jost their labels and so have been named isomer \mathbf{A} and isomer \mathbf{B}. (i) The carbon-13 NMR spectra of isomers A and B contain the following peaks. The identity of the compound responsible for each spectrum can be deduced by studying the chemical shifts (δ) of the peaks in the spectra. Use the Data Booklet to assign the correct peaks to the labelled carbon atoms in the structures of the isomers below. Write each value next to the relevant carbon atom and hence deduce the identity of each isomer. phenyl ethanoate is isomer \qquad B..... methyl benzoate is isomer \qquad (ii) These two isomers are difficult to distinguish chemically. Describe a method of converting them to suitable products in step 1 which can then be tested in step. 2. You should state the reagents and conditions for each step, and: any observations you would make. step 1 ..Hydrolyse with di!. HCl and heat:.. and .a benzoic acid..........ill...result \qquad 3 \qquad be the lwhite pet compound parent.	(2) A correct answer. Examiners allowed the use of the Data Booklet range as an alternative to quoting the correct value from the table. Mark for (b) (i) $=2 / 2$ (3) Three marks awarded. Dil HCl is equivalent to $\mathrm{HCl}(\mathrm{aq})$ for the first marking point. Mark for (b) (ii) $=3 / 3$ Total marks awarded = 8 out of 8

How the candidate could have improved their answer

(a) The candidate could have stated in words that 'enzymes are specific because the substrate has a complementary shape to the active site of the enzyme'.

Mark awarded = (a) 3/3
Mark awarded $=($ b) $(\mathbf{i}) \mathbf{2 / 2}$, (ii) $3 / 3$
Total marks awarded = 8 out of 8

Example candidate response - middle	Examiner comments
6 Esterases are enzymes that hydrolyse esters. Enzymes can be quite specific in the structures of the substrates they act upon. For example, an esterase isolated from the mould Aspergillus niger will hydrolyse phenyl ethanoate, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, but not its isomer methyl benzoate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{CH}_{3}$. (a) Outline how enzymes catalyse reactions, and explain their specificity. Use diagrams in your answer where appropriate. substrate weakly bound to theactive site. product The enzymes have an active sitewith a specific three-dimensional shape whichiscomplementaryto the sulsstrate. The substrate weaklybinds to it and... is converted to product after which the active site is leftopen for andther substrate moleculs.	(1) The clear, labelled diagrams along with the text obtain the essential marking point and three of the four other points on the mark scheme. The candidate could have stated that the interaction of the substrate with the active site causes a specific bond to be weakened or lowers the activation energy. Mark for $(a)=3 / 3$

 labels and so have been named isomer A and isomer B.
(i) The carbon-13 NMR spectra of isomers A and B contain the following peaks:

isomer A	isomer B
$\delta 52$	$\delta 26$
$\delta 128$	$\delta 122$
$\delta 129$	$\delta 126$
$\delta 130$	$\delta 129$
$\delta 133$	$\delta 151$
$\delta 167$	$\delta 169$

The identity of the compoundresponsible'for each spectrum can be deduced by studying the chemical shifts (δ) of the peaks in the spectra.

Use the Data Booklet to assign the correct peaks to the labelled carbon atoms in the structures of the isomers below. Write each value, next to the relevant carbon atom and hence deduce the identity of each:isomer.

phenyl ethanoate is isomer.... A.

methyl benzoate is isomer \quad.....

(ii) These two isomers are difficult to distinguish chemically.

Describe a method of converting them to suitable products in step 1 which can then be tested in step 2 :
You should state the reagents and conditions for each step, and any observations you would make.
$\mathrm{NaOH}(a q)$
step 1 Add
a farbouglic acid to it lead to the formation of phenol \qquad
step 2 . Phend can be tested with aq: Bromine it will form a whiteppt.
[Total: 8]

Total marks awarded $=$ 4 out of 8

How the candidate could have improved their answer
(a) The candidate could have stated that the interaction of the substrate with the active site causes a specific bond to be weakened or lowers the activation energy for this process.
(b) (i) The candidate should have used the Data Booklet to identify the values for these peaks. Phenyl ethanoate is B with values of $\delta 26$ for $\mathrm{CH}_{3}-\mathrm{CO}$ and $\delta 169$ for $\mathrm{CH}_{3} \mathrm{CO}$. Methyl benzoate is A with values of δ 52 for $\mathrm{CH}_{3}-\mathrm{O}$ and $\delta 167$ for phenyl-CO.
(b) (ii) The candidate should have included 'heat' and 'followed by acidification' in the alkaline hydrolysis step.

Mark awarded = (a) 3/3
Mark awarded $=(b)$ (i) $0 / 2$, (ii) $1 / 3$
Total marks awarded = 4 out of 8

Enzymes can be quite specific in the structures of the substrates they act upon. For example, an esterase isolated from the mould Aspergillus niger will hydrolyse phenyl ethanoate, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, but not its isomer methyl benzoate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{CH}_{3}$.
(a) Outline how enzymes catalyse reactions, and explain their specificity. Use diagrams in your answer where appropriate

1

 ...adsonption for spewfic reactout only. They act as a catalyst and speed al the esterfication.
(1) No marks awarded, The candidate needed to include labelled diagrams illustrating the lock-and-key mechanism. They should also have stated that the enzymes are specific because the substrate has a complementary shape to the active site of the enzyme.

Mark for $(a)=0 / 3$

Example candidate response - low, cont
(b) Sample bottles of each of the isomers phenyl ethanoate and
labels and so have been named isomer \mathbf{A} and isomer \mathbf{B}.
(i) The carbon-13 NMR spectra of isomers A and B contain
\qquadisomer \mathbf{A} isomer B $\delta 52$ $\delta 26$ $\delta 128$ $\delta 122$ $\delta 129$ $\delta 126$ $\delta 130$ $\delta 129$ $\delta 133$ $\delta 151$ $\delta 167$ $\delta 169$

The identity of the compound responsible for each spectrum. can be. deduced by studying the chemical shifts (δ) of the peaks in the spectra.

Use the Data Booklet to assign the correct peaks to the labelled carbon atoms in the structures of the isomers below. Write each value next to the relevant carbon atom and hence deduce the identity of each isomer.

phenyl ethanoate is isomer B

methyl benzoate is isomer
(ii) These two isomers are difficult to distinguish chemically.

Describe a method of converting them to suitable products in step 1 which can then be tested in step 2.
You should state the reagents and conditions for each step, and any observations you would make.
step 1 Uss concentrated hydouchlone ace
 ..produce 2 dofferut products for each compound \qquad 3

Dilute $1+$ (aq) and heat ondir reflux.
 from step [.........ll (...give below precipitate as po..
[Total: 8]

Examiner comments

(2) A correct answer.

Mark for (b) (i) $=2 / 2$
(3) One mark is awarded for step one, the first marking point in the mark scheme. The iodoform reaction would not give a yellow precipitate with any of the hydrolysis products. Candidates should have used aqueous bromine, which would give a white precipitate with hydrolysis product, phenol, from phenyl ethanoate.

Mark for (b) (ii) = 1/3

Total marks awarded = 3 out of 8

How the candidate could have improved their answer
(a) The candidate should have included labelled diagrams illustrating the lock-and-key mechanism as shown below.

They should also have stated that the enzymes are specific because the substrate has a complementary shape to the active site of the enzyme.
(b) (ii) The candidate should have used aqueous bromine, which would give a white precipitate with hydrolysis product, phenol, from phenyl ethanoate. The hydrolysis products from methyl benzoate would show no change.

Mark awarded = (a) 0/3
Mark awarded = (b) (i) 2/2, (ii) 1/3

Total marks awarded $=3$ out of 8

Common mistakes candidates made in this question

(a) Common errors were omitting any reference to 'active site' or 'enzyme specificity' in their explanation and drawing unlabelled diagrams with little explanation.
(b) (i) Some candidates identified the isomers but incorrectly assigned their δ values.
(b) (ii) Some candidates omitted dilute/aq with the acid and heat in step 1. Common errors in step 2 were use of the iodoform reaction or aqueous sodium carbonate.

Question 7

Example candidate response - high	Examiner comments
7 (a) Amino acids can be separated by electrophoresis. (i) Draw a labelled diagram of the apparatus used to separate a mixture by electrophoresis (ii) Explain the principles of the separation of amino acites by dipeectron tho shoresis. It is bard on acid-bar reation: Amino acid will move to either ent dyenting on th ispletitic. pint and choress on amno arcid. (b) Electrophoresis is usually carried out in a buffer solution. Given three buffers, with pH values of $2.0,7.0$ and 12.0 , suggest, with a reason, which buffer would be the most suitable for the separation of the following amino acid mixtures. Your reasons should refer to the structure of each molecule. (The structures of these amino acids are given in the Data Booklet.) (i) Asp and Val neutral buffer pH 7.0 reason shar wim is zuithrion, it will not move. For apeotr acid, it ceris a magtiond danged and will move to psstive am to ts $\cos _{-\mathrm{cos}_{2}}$ gap. buffer pH 70 (4) \#7. Hysin ane Bastive du to Whis ad will mon to... (iii) Tyr And Phe magtie polv. buffer pH 70 Phumplamin s a Euitrion at will not move. \# Tyysim is slightly acidic du to th phanolic grop, henue ${ }^{[3]}$ thuse is a matice chage ($\mathbf{e r}^{-1}$) ad it will mat of pasitie palh.	(1) A clear, correctly labelled diagram which earns all the marking points from the mark scheme. Mark for (a) (i) = 3/3 (2) One mark is awarded for the direction of movement related to the charge on the amino acid. The candidate has omitted the effect of size/Mr on the distance travelled. Mark for (a) (ii) $=1 / 2$ (3) A correct answer. Mark for (b) (i) $=1 / 1$ (4) A correct answer. Mark for (b) (ii) $=1 / 1$ (5) An incorrect answer. The candidate should have chosen pH 12. Tyr would move further (towards the positive electrode) than Phe (as Tyr has a charge of 2and Phe a charge of $1-)$. Mark for (b) (iii) $=0 / 1$

Example candidate response - high, continued

The infra-red spectrum of Gly-Ser is shown below.

(ii) Use the Data Booklet to identify the bond in the molecule of Gly-Ser that is responsible for each of the peaks indicated on the above infra-red spectrum.
E

F \qquad
G \qquad
(7)
[Total: 12]

Examiner comments

6 A correct answer. Only the peptide bond needed to be shown as a displayed formula.

Mark for (c) (i) $=2 / 2$
(7) A correct answer. An alternative answer for E is $\mathrm{N}-\mathrm{H}$.

Mark for (c) (ii) $=2 / 2$

Total marks awarded = 10 out of 12

How the candidate could have improved their answer
(a) (i) The candidate should have labelled their power supply as 'DC power supply'. Examiners accepted 'power supply' with '+' and '-' charges.
(a) (ii) The candidate should have stated the effect of size/ M_{r} of the amino acid on the distance travelled.
(b) (iii) A pH 12 should have been chosen here. Tyr would move further (towards the positive electrode) than Phe (as Tyr has a charge of $2-$ and Phe a charge of $1-$).

Mark awarded $=(a)$ (i) $3 / 3$, (ii) $1 / 2$
Mark awarded $=(b)$ 2/3
Mark awarded = (c) (i) 2/2, (ii) 2/2
Total marks awarded = 10 out of 12

| Example candidate response - middle |
| :--- | :--- |
| $\mathbf{7}$ (a) Amino acids can be separated by electrophoresis. |
| (i) Draw a labelled diagram of the apparatus used to separate a mixture by electrophoresis. |
| electrdyte |

(ii) Explain the principles of the separation of amino acids by electrophoresis.

A DC voltage is provided which causes the 2 amino acids to move according to their charge that is tue towards cathode, -eve tewardsanode. The bigger the molecule slower it will move, less distance
(b) Electrophoresis is usually carried out in a buffer solution.

Given three buffers, with pH values of 2.0, 7.0 and 12.0, suggest, with a reason, which buffer would be the most suitable for the separation of the following amino acid mixtures. Your reasons should refer to the structure of each molecule.
(The structures of these amino acids are given in the Data Booklet.)
(i) Asp and Val
buffer ph 12.0
3
reason They both are acidic in nature and will therefore move better in alkaline conditions.
(ii) Leys and Ser

4

buffer pH \qquad
reason
(iii) Tyr and Phe
buffer pH 5
reason The difference in negativity is so great that the mixture will be separated.

Examiner comments

(1) Two marks awarded for marking points two and three. The candidate should have connected the DC power supply to the ends of the slide or in electrolyte tanks.

Mark for (a) (i) $=2 / 3$
(2) A correct answer.

Mark for (a) (ii) $=2 / 2$
(3) The correct pH is given here but the reasoning is incorrect. At pH 12 Asp is more negative so moves further (towards the positive electrode).

Mark for (b) (i) $=0 / 1$
(4) No response. The candidate could have chosen pH 2 where Leys is more positive so moves further (towards the negative electrode).

Mark for (b) (ii) $=0 / 1$
(5) The pH given is incorrect. The candidate should have chosen pH 12 where Tyr is more negative so moves further (towards the positive electrode).

Mark for (b) (iii) $=0 / 1$
(c) (i) Draw the structure of the dipeptide Gly-Ser, showing the peptide bond in full.

How the candidate could have improved their answer

(a) (i) The candidate should have connected the DC power supply to the ends of the slide or in electrolyte tanks as shown.

(b) The candidate could have chosen:

- for Asp and Val a pH 12 where Asp is more negative (as a 2- charge) so moves further (towards the positive electrode),
- for Lys and Ser, a pH 2 where Lys is more positive (as a 2+ charge) so moves further (towards the negative electrode),
- Tyr and Phe, a pH 12 where Tyr is more negative (as a 2- charge) so moves further (towards the positive electrode).
(c) (ii) The candidate should have chosen either the $\mathrm{O}-\mathrm{H}$ bond or the $\mathrm{N}-\mathrm{H}$ bond for \mathbf{E}.

Mark awarded = (a) (i) 2/3, (ii) 2/2
Mark awarded $=(b) 0 / 3$
Mark awarded $=(\mathrm{c})$ (i) $\mathbf{2 / 2}$, (ii) $1 / 2$
Total marks awarded = 7 out of 12

Example candidate response - low	Examiner comments
7 (a) Amino acids can be separated by electrophoresis. (i) Draw a labelled diagram of the apparatus used to separate a mixture by electrophoresis. (ii) Explain the principles of the separation of amino acids by electrophoresis. \Rightarrow By the principles of seperaton of aminoacide 2 ... by electiophoresis amino acrd sepesatos by fomung ioms......rst coar sepenates folloued... [2] by NH_{2} (b) Electrophoresis is usually carried out in a buffer solution. Given three buffers, with pH values of 2.0, 7.0 and 12.0 , suggest, with a reason, which buffer would be the most suitable for the separation of the following amino acid mixtures. Your reasons should refer to the structure of each molecule. (The structures of these amino acids are given in the Data Booklet.) (i) Asp and Val buffer pH .. *- $12 \cdot 0$. reason ph ualue 2.0 as the stroctore of canbremic grosp and allcane groap ca which becomes acidre can be \qquad seperated by botiz. butter. (ii) Lys and Ser $n_{2} \mathrm{~N}-\mathrm{Cn}_{2} \in n_{2} \mathrm{Cl}_{2} \mathrm{Cn}_{2}$ buffer pH人18 22.0 \qquad \qquad reason Presence of amines makes the coutron bacic and bosrc and aaidic botter wovid release the base due to common ion ettect. (iii) Tyr and Phe buffer pH . \qquad K20 7-0 reason ... The appear to be neutsal which oan \qquad help to in laring about a change in both the compound.	(1) No marks awarded. The candidate should have drawn a clear, labelled diagram of the electrophoresis apparatus. Mark for (a) (i) $=0 / 3$ (2) No marks awarded. The candidate needed to relate the direction of movement to the charge on the amino acid, and the distance travelled to the Mr of the amino acid. Mark for (a) (ii) $=0 / 2$ (3) The correct pH is given, but with incorrect reasoning. At pH 12, Asp is more negative so moves further (towards the positive electrode). Mark for (b) (i) $=0 / 1$ (4) The correct pH is given, but with incorrect reasoning. At pH 2, Lys is more positive so moves further (towards the negative electrode). Mark for (b) (ii) $=0 / 1$ (5) An incorrect answer. The candidate should have chosen pH 12 where Tyr is more negative so moves further (towards the positive electrode). Mark for (b) (iii) $=0 / 1$

Example candidate response - low, continued	Examiner comments
(c) (i) Draw the structure of the dipeptide Gly-Ser, showing the peptide bond in full. The infra-red spectrum of Gly-Ser is shown below. (ii) Use the Data Booklet to identify the bond in the molecule of Gly-Ser that is responsible for each of the peaks indicated on the above infra-red spectrum. E. \qquad $0-4$ carboxylic F. \qquad $c=0$ amides G \qquad	6 One mark is awarded for the peptide bond. The candidate has drawn an aldehyde functional group instead of a carboxylic acid in the Ser unit of the dipeptide. Mark for (c) (i) = 1/2 (7) A correct answer. Mark for (c) (ii) $=2 / 2$ Total marks awarded = 3 out of 12

How the candidate could have improved their answer

(a) (i) The candidate should have drawn a clear labelled diagram as shown below.

(a) (ii) The candidate should have related the direction of movement to the charge on the amino acid, and the distance travelled to the M_{r} of the amino acid.
(b) The candidate could have chosen:

- for Asp and Val a pH 12 where Asp is more negative (as a 2- charge) so moves further (towards the positive electrode),
- for Lys and Ser, a pH 2 where Lys is more positive (as a 2+ charge) so moves further (towards the negative electrode),
- Tyr and Phe, a pH 12 where Tyr is more negative (as a 2- charge) so moves further (towards the positive electrode).
(c) (i) The candidate should have drawn a carboxylic acid group instead of an aldehyde group in the Ser unit of the dipeptide.

Mark awarded $=(a)$ (i) $\mathbf{0 / 3}$, (ii) $0 / 2$
Mark awarded $=(b) 0 / 3$
Mark awarded $=($ (c) (i) $\mathbf{1 / 2}$, (ii) $\mathbf{2 / 2}$

Total marks awarded = 3 out of 12

Common mistakes candidates made in this question

(a) (i) Common errors included an incomplete circuit and omitting the filter paper or gel.
(a) (ii) Some candidates did not relate the size $/ M_{r} /$ magnitude of the charge to the speed of movement/distance travelled. Mass was often stated instead of M_{r}, which was not sufficient.
(b) Many candidates had difficulty identifying the charge on the amino acid at a particular pH and chose an incorrect pH . Some candidates referred only to the R group in their explanation and omitted the effect of pH on the COOH and NH_{2} groups. For example, for Asp and Val at pH 12 Val does not move as it has no charge and Asp has a negative charge and moves towards the positive electrode.
(c) (i) Common errors were connectivity errors linked to the $\mathrm{CH}_{2} \mathrm{OH}$ and COOH groups and drawing a polymer unit with continuation bonds.
(c) (ii) Common errors included giving the structure or naming the functional group without highlighting the specific bond responsible for the peak.

Question 8

Example candidate response - high	Examiner comments
8 (a) Describe and explain the trend in the solubility of the hydroxides down Group 2. Es foing donn geop Group 2 , both lathice energy ond Indation coergy. E2 Enthalpy of sohtien becoms more cxothurmic and so, sombility....... of Grap 2 Indoxide increasus: \qquad [3] (b) Calcium reacts vigorously with $\mathrm{HCl}(\mathrm{aq})$ producing $\mathrm{H}_{2}(\mathrm{~g})$. $\mathrm{Ca}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ (i) How would you expect the enthalpy change for this reaction to compare with the enthalpy change for the reaction where $\mathrm{HNO}_{3}(\mathrm{aq})$ is used in place of HCl but all other conditions are the same? Explain your answer. It will be abont the sam sina both Hu and HiNO are stang acid and fomines moworotic acid. 2 \qquad [1]	(1) A correct answer. Mark for (a) = $3 / 3$ (2) A correct answer. Mark for (b) (i) $=1 / 1$

(3) One mark for a clear, correct Hess cycle diagram. Two marks for -1624 . The candidate only uses 1×-1090 in the calculation instead of 2×-1090.

Mark for (b) (ii) $=3 / 4$
(4) This earns the first marking point. For the other mark, the candidate should have linked the less negative enthalpy change to the energy needed to dissociate the weak acid.

Mark for (c) $=1 / 2$

Total marks awarded = 8 out of 10

How the candidate could have improved their answer
(b) (ii) The candidate should have used 2×-1090 in the calculation of x as shown.

$$
\begin{aligned}
& \boldsymbol{x}=\Delta \mathrm{H}_{\mathrm{at}}(\mathrm{Ca})+\mathrm{IE}(1)+\mathrm{IE}(2)-2 \Delta \mathrm{H}_{\text {hyd }}\left(\mathrm{H}^{+}\right)+\Delta \mathrm{H}_{\text {hyd }}\left(\mathrm{Ca}^{2+}\right)-2 \mathrm{IE}(\mathrm{H})-\mathrm{E}(\mathrm{H}-\mathrm{H}) \\
& \boldsymbol{x}=178+590+1150+2(1090)-1576-2(110)-436 \\
& \boldsymbol{x}=-534 \mathrm{~kJ} \mathrm{~mol}
\end{aligned}
$$

(c) The candidate should have linked the less negative enthalpy change to the energy needed to dissociate $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$.

Mark awarded = (a) $3 / 3$
Mark awarded = (b) (i) $1 / 1$, (ii) $3 / 4$
Mark awarded $=(\mathrm{c}) \mathbf{1 / 2}$
Total marks awarded $=8$ out of 10

Example candidate response - middle/low	Examiner comments
8 (a) Describe and explain the trend in the solubility of the hydroxides down Group 2. (1) They get more soluble going down the group. As $A \Delta H$ hyd and ΔH_{2} E both. decrease but. ΛH_{L}. E decreases at faster rate hence Atsol gets more exothermic....[3] (b) Calcium reacts vigorously with $\mathrm{HCl}(\mathrm{aq})$ producing $\mathrm{H}_{2}(\mathrm{~g})$. $\mathrm{Ca}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ (i) How would you expect the enthalpy change for this reaction to compare with the enthalpy change for the reaction where $\mathrm{HNO}_{3}(\mathrm{aq})$ is used in place of HCl but all other conditions are the same? Explain your answer. (2) The enthalpg would be higher as it requires more enorgy for HNO_{3} [1]	(1) A correct answer. Mark for $(a)=3 / 3$ (2) An incorrect answer. HNO_{3} or HCl are both strong acids so the enthalpy change should be similar. The ionic equation for the reaction of Ca with HNO_{3} or HCl is the same. Mark for (b) (i) $=0 / 1$

How the candidate could have improved their answer
(b) (i) The candidate should have suggested that the enthalpy change would be similar since they are both strong acids.
(b) (ii) The Hess cycle should have had ' $2 \mathrm{H}^{+}(\mathrm{g})^{\prime}$ instead of ' $\mathrm{H}_{2}(\mathrm{~s})^{\prime}$:

The answer to \mathbf{x} is -534 and can be calculated as shown:

$$
\begin{aligned}
& \boldsymbol{x}=\Delta \mathrm{H}_{\mathrm{at}}(\mathrm{Ca})+\mathrm{IE}(1)+\mathrm{IE}(2)-2 \Delta \mathrm{H}_{\mathrm{hyd}}\left(\mathrm{H}^{+}\right)+\Delta \mathrm{H}_{\mathrm{hyd}}\left(\mathrm{Ca}^{2+}\right)-2 \mathrm{IE}(\mathrm{H})-E(\mathrm{H}-\mathrm{H}) \\
& \boldsymbol{x}=178+590+1150+2(1090)-1576-2(1310)-436 \\
& \boldsymbol{x}=-534 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

(c) The candidate should have stated that $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is a weak acid so some energy is needed to dissociate the acid.

Mark awarded = (a) 3/3
Mark awarded $=(b)$ (i) 0/1, (ii) 0/4
Mark awarded = (c) 0/2
Total marks awarded = 3 out of 10

Example candidate response - low	Examiner comments
8 (a) Describe and explain the trend in the solubility of the hydroxides down Group 2. \qquad (b) Calcium reacts vigorously with $\mathrm{HCl}(\mathrm{aq})$ producing $\mathrm{H}_{2}(\mathrm{~g})$. $\mathrm{Ca}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ (i) How would you expect the enthalpy change for this reaction to compare with the enthalpy change for the reaction where $\mathrm{HNO}_{3}(\mathrm{aq})$ is used in place of HCl but all other conditions are the same? Explain your answer. 	1 Credit is earned for the enthalpy of solution becoming less negative linked to the solubility decreasing. The solubility of the hydroxides increases down Group 2 as lattice energy decreases faster than enthalpy of hydration. So enthalpy of solution becomes more negative. Mark for $(a)=1 / 3$ (2) An incorrect answer. As HNO_{3} or HCl are both strong acids the enthalpy change should be similar. Mark for (b) (i) $=0 / 1$

Example candidate response - low, continued	Examiner comments
(ii) The ionic equation for this reaction is shown. $\mathrm{Ca}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=\mathrm{x} \mathrm{~kJ} \mathrm{~mol}^{-1}$ Construct a fully labelled Hess' Law cycle to connect each side of this equation to the relevant gas phase ions. Use your cycle, the following data, and data from the Data Booklet, to calculate a value for \mathbf{x}. (c) The standard enthalpy change for the reaction between $\mathrm{Ca}(\mathrm{s})$ and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})$ is less negative than x by $2 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Suggest an explanation for this. \qquad \qquad Sosslow rexition ocurr.	(3) No marks. The Hess cycle is incorrect and it is not a cycle. The answer for x is -534 . The candidate makes three errors in their calculation. Mark for (b) (ii) $=0 / 4$ 4 Examiners allowed marking point one for ${ }^{\mathrm{C}} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ does not fully decompose into H^{+}and $\mathrm{CH}_{3} \mathrm{CO}_{2}^{--}$as alternative wording for 'is incompletely ionised'. For the second mark, the candidate needed to state that this dissociation requires energy. Mark for (c) $=1 / 2$ Total marks awarded = 2 out of 10

How the candidate could have improved their answer

(a) The candidate should have stated that solubility increases (down the group) because lattice energy decreases faster than $\Delta H_{\text {hyd }}$. This results in the enthalpy of solution becoming more exothermic.
(b) (i) The candidate should have stated that HNO_{3} and HCl are both strong acids so the enthalpy change would be similar.
(b) (ii) The Hess cycle should have been drawn as follows:

The answer to \mathbf{x} is -534 and can be calculated as shown:

$$
\begin{aligned}
& \boldsymbol{x}=\Delta \mathrm{H}_{\mathrm{at}}(\mathrm{Ca})+\mathrm{IE}(1)+\mathrm{IE}(2)-2 \Delta \mathrm{H}_{\text {hyd }}\left(\mathrm{H}^{+}\right)+\Delta \mathrm{H}_{\text {hyd }}\left(\mathrm{Ca}^{2+}\right)-2 \mathrm{IE}(\mathrm{H})-E(\mathrm{H}-\mathrm{H}) \\
& \boldsymbol{x}=178+590+1150+2(1090)-1576-2(1310)-436 \\
& \boldsymbol{x}=-534 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

(c) The candidate should have described the breakdown of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ into H^{+}ions and $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$ions as a dissociation. For full marks, examiners required candidates to suggest that this would require some energy.

Mark awarded = (a) 1/3
Mark awarded $=(b)$ (i) $\mathbf{0} 1 \mathbf{1}$, (ii) $0 / 4$
Mark awarded $=(\mathrm{c}) \mathbf{1 / 2}$
Total marks awarded = 2 out of 10

Common mistakes candidates made in this question

(a) A common error was omitting any reference to the enthalpy of solution, $\Delta \mathrm{H}_{\text {sol }}$. Some candidates stated the solubility decreased down the group.
(b) (i) Many candidates did not appreciate that both acids would be fully ionised.
(b) (ii) Many candidates did not draw a complete Hess cycle. A wide range of answers was seen for the calculation. Common errors included missing out necessary values, multiples and using incorrect signs.
(c) Many candidates did not explain the difference in standard enthalpy change between the two acids.

Question 9

How the candidate could have improved their answer
(b) The candidate omitted the alkyl group for structure J . The correct structure of J is as shown:
J is

Mark awarded $=(\mathrm{a}) 1 / 1$
Mark awarded = (b) $1 / 2$
Mark awarded $=(\mathrm{c}) 6 / 6$
Mark awarded $=(d) \mathbf{2 / 2}$
Total marks awarded = 10 out of 11
Example candidate response - middle
The anti-inflammatory drug ibuprofen can be synthesised from benzene via the following six steps.

How the candidate could have improved their answer

(b) The candidate needed to identify compound H as methylketone, as shown below:

(c) The candidate should have suggested the reagents and conditions for steps 1,2 and 6 as shown below:

- step 1 the chloroalkane should be $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{C} /$ with AlCl_{3}
- step 2 the reagent should be $\mathrm{CH}_{3} \mathrm{COC} /$ with $\mathrm{A}_{2} \mathrm{Cl}_{3}$
- step 6 a nickel catalyst should be used with H_{2} to avoid hydrogenation of the benzene ring.
(d) The type of reaction for step 6 should be 'addition' or 'reduction'.

Mark awarded = (a) 1/1
Mark awarded $=(b) 1 / 2$
Mark awarded $=(c) 3 / 6$
Mark awarded =(d) 2/2
Total marks awarded = 7 out of 11
Example candidate response - Iow

How the candidate could have improved their answer

(b) Structure J should have been identified as shown below:
J is

(c) The candidate should have suggested the reagents and conditions for steps 3-6 as shown below:

- step $3 \mathrm{HCN}+\mathrm{NaCN}$
- step 4 aqueous HCl + heat
- step 5 conc. $\mathrm{H}_{2} \mathrm{SO}_{4}+$ heat
- step $6 \mathrm{H}_{2}+\mathrm{Ni}$ catalyst (+ heat).
(d) The candidate should have identified the type of reaction for step 6 as 'reduction'.

Mark awarded = (a) 1/1
Mark awarded = (b) $\mathbf{1 / 2}$
Mark awarded $=($ (c) $2 / 6$
Mark awarded $=(\mathrm{d}) \mathbf{1 / 2}$
Total marks awarded =5 out of 11

Common mistakes candidates made in this question

(a) A number of candidates gave no response for this question. Some candidates failed to identify the chiral centre in ibuprofen.
(b) A common error was identifying compound H as an alcohol.
(c) Common errors were:

- incorrect structures for the halogenoalkane and acyl chlorides
- omitting AlCl_{3} in steps 1 and 2
- omitting 'concentrated' with $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$
- the use of LiAlH_{4} in step 6.
(d) Some candidates identified the mechanism as electrophilic addition and the type of reaction as an elimination or substitution reaction.

Question 10

Example candidate response - high

10 (a) (i) Complete the electronic configuration of the iron atom.

$$
\begin{equation*}
\text { Fe } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2} \tag{1}
\end{equation*}
$$

(ii) In some of its complexes, the Fe^{3+} ion has only one unpaired electron in its d orbitals.

Using the symbols \uparrow and \downarrow to represent electrons of opposite spins, complete the following diagram to show the d orbital electronic configuration of this Fe^{3+} ion.

(b) A solution containing a mixture of $\mathrm{Sn}^{2+}(\mathrm{aq})$ and $\mathrm{Sn}^{4+}(\mathrm{aq})$ is added to a solution containing a mixture of $\mathrm{Fe}^{2+}(\mathrm{aq})$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$.

Use E^{\ominus} data from the Data Booklet to predict the reaction that might take place when the two solutions are mixed, and write an equation for the reaction.

(c) Hexaaquairon(III) ions are pale violet. They form a colourless complex with fluoride ions, F^{-}, equilibrium 1, and a deep-red complex with thiocyanate ions, SCN-, equilibrium 2.

$$
\begin{aligned}
& {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{F}^{-} \rightleftharpoons\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{~F}\right]^{2+}+\mathrm{H}_{2} \mathrm{O} \quad \text { equilibrium } 1 K_{\text {stab }}=2.0 \times 10^{5} \mathrm{~mol}^{-1} \mathrm{dm}^{3}} \\
& \text { violet colourless }
\end{aligned}
$$

violet
deep-red
(i) Predict and explain the sequence of colour changes you would observe in each of the following experiments.

- A few drops of $\mathrm{KSCN}(\mathrm{aq})$ are added to $5 \mathrm{~cm}^{3}$ of $\mathrm{Fe}^{3+}(\mathrm{aq})$, followed by a few drops of $\mathrm{KF}(\mathrm{aq})$.

A few drops of KSCN forms a deep red complex butcolor mixing.... mates.it. puxple.. Adding KF forms a colorless complex through
substitution but oolor mixing makes it paler. Higher Kstab from
- A few drops of KF(aq) are added to $5 \mathrm{~cm}^{3}$ of $\mathrm{Fe}^{3+}(\mathrm{aq})$, followed by a few drops of $\operatorname{KSCN}(\mathrm{aq})$. KF has a greater effect
.... violet to pale riolet to pale purple: \qquad The adding of $K f$ makes a colorlesscomplex that makes the color paler. Adding a few drops of KSCM makes a deep red complex which makes the color a pale purple due tocolor [4] mixing
(ii) What type of reaction is occurring during the experiments in (i)?
\qquad Ligand substitution reaction

Examiner comments

(1) The correct electronic configuration of Fe .

Mark for (a) (i) = 1/1
(2) A correct answer.

Mark for (a) (ii) = $1 / 1$
(3) Correct use of the data and a balanced equation given.

Mark for (b) $=2 / 2$
(4) Three correct colour changes identified but not explained. The examiner expected candidates to give the reasons for these colour changes. For example, the stability of the complex ion of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{~F}\right]^{2+}$ is greater than $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SCN}\right]^{+}$.

Mark for (c) (i) $=2 / 4$
(5) A correct type of reaction identified.

Mark for (c) (ii) $=1 / 1$

Total marks awarded = 7 out of 9

How the candidate could have improved their answer
(c) (i) The candidate needed to say that when a few drops of $\operatorname{KSCN}(\mathrm{aq})$ are added to the colourless solution of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{~F}\right]^{2+}$, there is no change and the solution stays colourless. This is because the stability constant for $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{~F}\right]^{2+}$ is greater than $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SCN}\right]^{+}$.

Mark awarded = (a) (i) $1 / 1$, (ii) $1 / 1$
Mark awarded = (b) $\mathbf{2 / 2}$
Mark awarded $=(\mathrm{c})$ (i) $2 / 4$, (ii) $1 / 1$
Total marks awarded =7 out of 9

Example candidate response - middle

10 (a) (i) Complete the electronic configuration of the iron atom.
Fe $1 s^{2} 2 s^{2} 2 p^{6} \ldots s^{2} 3 p^{6} 3 d^{8} 4 s^{2} \ldots \ldots .$.
(ii) In some of its complexes, the Fe^{3+} ion has only one unpaired electron in its d orbitals.

Using the symbols \uparrow and \downarrow to represent electrons of opposite spins, complete the following diagram to show the d orbital electronic configuration of this Fe^{3+} ion.

$$
\text { 3d }\left\{\left.\begin{array}{ccc}
1 & & \tag{1}\\
\cdots \cdots & \\
1 L & 1 L & 1 L .
\end{array} \right\rvert\, \text { energy } 2\right.
$$

(b) A solution containing a mixture of $\mathrm{Sn}^{2+}(\mathrm{aq})$ and $\mathrm{Sn}^{4+}(\mathrm{aq})$ is added to a solution containing a mixture of $\mathrm{Fe}^{2+}(\mathrm{aq})$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$.

Use E^{e} data from the Data Booklet to predict the reaction that might take place when the two solutions are mixed, and write an equation for the reaction.
(c) Hexaaquairon(III) ions are pale violet. They form a colourless complex with fluoride ions, F^{-}, equilibrium 1, and a deep-red complex with thiocyanate ions, SC̣N-, equilibrium 2.

(i) Predict and explain the sequence of colour changes you would observe in each of the following experiments.

- A few drops of $\operatorname{KSCN}(\mathrm{aq})$ are added to $5 \mathrm{~cm}^{3}$ of $\mathrm{Fe}^{3+}(\mathrm{aq})$, followed by a few drops of $\mathrm{KF}(\mathrm{aq})$.

- A few drops of $\operatorname{KF}(\mathrm{aq})$ are added to $5 \mathrm{~cm}^{3}$ of $\mathrm{Fe}^{3+}(\mathrm{aq})$, followed by a few drops of KSCN(aq).

(ii) What type of reaction is occurring during the experiments in (i)?
...................gand erchange: (5) [1]

Examiner comments

(1) An incorrect answer. It should be $3 d^{6}$.

Mark for (a) (i) = 0/1
(2) One mark is awarded for an error carried forward here. This diagram has only one unpaired electron and shows the loss of three electrons (two from the 4 s and one from the 3d subshells).

Mark for (a) (ii) $=1 / 1$
(3) One mark for extracting relevant E^{\ominus} data from the Data Booklet. The candidate gives the equation for the reverse (nonspontaneous) reaction.

Mark for (b) $=1 / 2$
(4) Three correct colour changes identified, but not explained. The examiner expected candidates to give the reasons for these colour changes. For example, the stability constant for equilibrium 1 is greater than equilibrium 2.

Mark for (c) (i) $=2 / 4$
(5) A correct answer.

Mark for (c) (ii) $=1 / 1$

Total marks awarded = 5 out of 9

How the candidate could have improved their answer
(a) (i) The electronic configuration of an iron atom should have been completed by $3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$.
(a) (ii) The candidate was awarded this mark for the error carried forward from their incorrect answer to (a)(i). The correct answer is as shown:

(b) The correct equation is: $\mathrm{Sn}^{2+}+2 \mathrm{Fe}^{3+} \longrightarrow \mathrm{Sn}^{4+}+2 \mathrm{Fe}^{2+}$
(c) (i) When a few drops of $\mathrm{KSCN}(\mathrm{aq})$ are added to the colourless solution of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{~F}\right]^{2+}$, there is no change and the solution stays colourless. This is because the stability of the complex ion $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{~F}\right]^{2+}$ is greater than $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SCN}\right]^{+}$.

Mark awarded = (a) (i) 0/1, (ii) $1 / 1$
Mark awarded $=(b) 1 / 2$
Mark awarded = (c) (i) $2 / 4$, (ii) $1 / 1$
Total marks awarded $=5$ out of 9

(b) A solution containing a mixture of $\mathrm{Sn}^{2+}(\mathrm{aq})$ and $\mathrm{Sn}^{4+}(\mathrm{aq})$ is added to a solution containing a mixture of $\mathrm{Fe}^{2+}(\mathrm{aq})$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$. Use E^{\bullet} data from the Data Booklet to predict the reaction that might take place when the two solutions are mixed, and write an equation for the reaction.
$E^{\theta}=0.77-0.15=+0.62 \mathrm{~V}$, the reaction
is feasible. 3 int
$2 \mathrm{Fe}^{3+}+$ kelt \rightarrow $\mathrm{Sn}^{4+}+$ $+2 F e^{2}$ (3)
\qquad
\qquad [2] \ldots

$$
4-2+2+2
$$

on

Examiner comments

(1) A correct answer.

Mark for (a) (i) = $1 / 1$
(2) An incorrect answer. The candidate should have a $3 \mathrm{~d}^{5}$ configuration in the lower three d orbitals.

Mark for (a) (ii) $=0 / 1$
(3) Two marks awarded for a correct answer.

Mark for (b) $=2 / 2$

Example candidate response - low, continued	Examiner comments
(c) Hexaaquairon(III) ions are pale violet. They form a colourless complex with fluoride ions, F-, equilibrium 1, and a deep-red complex with thiocyanatẹ ions, $S^{-} N^{-}$, equilibrium 2. (i) Predict and explain the sequence of colour changes you would observe in each of the following experiments. - A few drops of $\mathrm{KSCN}(\mathrm{aq})$ are added' to $5 \mathrm{~cm}^{3}$ of $\mathrm{Fe}^{3+}(\mathrm{aq})$, followed by a few drops of $\mathrm{KF}(\mathrm{aq})$. A deep red solution is for med which then... turns light red. (4) - A few drops of $\mathrm{KF}(\mathrm{aq})$ are added to $5 \mathrm{~cm}^{3}$ of $\mathrm{Fe}^{3+}(\mathrm{aq})$, followed by a few drops of $\operatorname{KSCN}(\mathrm{aq})$. It will first tuminto light violet and then tum red. (ii) What type of reaction is occurring during the experiments. in (i)? Ligand-substitution 5	4 Only one correct colour change identified and no explanation, so no marks awarded. The examiner expected candidates to give a colour change for bullet point 1 (violet to light red to colourless) and for bullet point 2 (violet to colourless and stays colourless), and to explain these changes. The explanation for these colour changes would have been awarded marks for stating that the stability constant for equilibrium 1 is greater than equilibrium 2. Mark for (c) (i) $=0 / 4$ (5) A correct answer. Mark for (c) (ii) $=1 / 1$ Total marks awarded = 4 out of 9

How the candidate could have improved their answer
(a) (ii) The candidate should have drawn a $3 d^{5}$ configuration in the lower three d orbitals as shown:

(c) (i) The candidate should have given the following colour changes:

- KSCN added to Fe^{3+} followed by KF: (violet) \longrightarrow deep-red \longrightarrow colourless
- KF added to Fe^{3+} followed by KSCN: (violet) \longrightarrow colourless \longrightarrow stays colourless

This is due to the fact that the stability constant for $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{~F}\right]^{2+}$ is greater than $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SCN}\right]^{+}$.

Mark awarded $=(a)$ (i) $\mathbf{1 / 1}$, (ii) $\mathbf{0 / 1}$
Mark awarded $=(b) \mathbf{2 / 2}$
Mark awarded $=(c)$ (i) 0/4, (ii) $\mathbf{1 / 1}$

Total marks awarded $=4$ out of 9

Common mistakes candidates made in this question

(a) (i) Occasionally $3 s^{2} 3 p^{6} 3 d^{8}$ was seen.
(a) (ii) Many candidates completed the diagram with more than one unpaired electron or electrons not in their lowest energy state.
(b) Common errors included an unbalanced equation, and writing the equation for the reverse reaction as shown:

$$
\mathrm{Sn}^{4+}+2 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Sn}^{2+}+2 \mathrm{Fe}^{3+}
$$

(c) (i) Many candidates found it difficult to apply the information in the question and gave a wide range of different colour changes in their answers. Most candidates omitted any explanation for their colour changes.
(c) (ii) The most common error was 'displacement' on its own without 'ligand'.

Cambridge International Examinations
1 Hills Road, Cambridge, CB1 2EU, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cie.org.uk www.cie.org.uk
© Cambridge International Examinations 2017

